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Abstract

This paper presents the development and enhancement of the Issie software, an interactive schematic
simulator and integrated editor. Issie adheres to a set of principles aimed at providing a user-
friendly and intuitive experience for both novice and experienced users. This project delivers
an extensible SystemVerilog compiler and synthesis system for Issie, with extensive testing, and
high quality error messages, fully integrated into the Issie app. The report delves into the de-
sign decisions made during the project, highlighting the chosen language features and additional
language restrictions imposed as well as the detailed implementation of the context-free parser,
the context-sensitive semantic error handler and hardware generation process. The compiler sup-
ports behavioural and structural SystemVerilog features, including combinational and clocked al-
ways blocks, blocking and nonblocking assignments, conditional and case statements together with
module instantiation statements. Through this project, Issie’s SystemVerilog compiler has been
enhanced, providing users with an improved tool for designing and simulating hardware circuits.
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Chapter 1

Introduction

The Interactive Schematic Simulator and Integrated Editor (ISSIE) [1] is a digital circuit design
and simulator application. As Issie is developed for students who want to learn about digital
electronics, the application must be intuitive to use with error messages that are easy to understand
[1]. Issie is useful for creating hierarchical designs from schematic components with the application’s
outstanding user interface, and at the moment it also provides basic support for writing modules
in Verilog. Since the software is used for university teaching (Digital Electronics for first year
students at Imperial College London) it would be very useful to have extensive support for Verilog
so that students can have experience with hardware description languages from very early on and
to allow them to create complex circuits quickly.

Issie aims to distinguish itself from other simulators by adhering to the following principles:

P1 No need for manual or training to use it

P2 Mistakes should be explained by Issie in a way that makes them easy to correct

P3 The UI should provide visual prompts for all desired user operations

P4 Operation should be obvious: there should not be unexpected hidden state that affects what
happens

P5 Easy use by complete novice

P6 Efficient use by experienced individuals

Issie currently has a proof-of-concept Verilog compiler using a Nearley [2] parser. This supports
simple concurrent assignments for combinational logic. The main goal of this project is to extend
this compiler and allow it to handle clocked logic as well as behavioural and structural Verilog.
By adding these features, Issie could be used to not only teach Digital Electronics for first year
students but also second and potentially third and fourth year undergraduate students as there are
numerous modules in the Department of Electrical and Electronic Engineering at the university
where students have to implement Verilog projects. Although there are various Verilog (and other
HDL) simulators and synthesizers that are suitable for use by beginners, such as Icarus Verilog [3],
a lot of them are pure command line tools. For example a third party software, GTKWave [4] is
needed to display the wave-forms generated by Icarus Verilog[5], possibly making it difficult for a
beginner to learn digital electronics concepts. Other simulators that provide a graphical interface,
such as Quartus [6], are often targeted at experienced hardware engineers. With an extended
SystemVerilog compiler, Issie would allow the end users to easily design and simulate complex
digital circuits described by SystemVerilog (or a mix of schematic diagrams and SystemVerilog
components) using a single application.

This report first presents the necessary background material needed for the project in chapter 2
by introducing the Issie technology stack, the most important concepts in SystemVerilog as well
as concepts in the field of compilers along with various parsing methods. Chapter 3 discusses the
high level overview of the required and desirable features of the project. The high level decisions
and implementation choices made during the planning and development of the compiler can be
found in chapter 4. Chapter 6 quantitatively evaluates the correctness of the compiler whereas
chapter 7 qualitatively evaluates the final product focusing on the quality of the error messages, the
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compilation performance and the maintainability of the code base, and it compares the outcomes
of the project with the requirement capture. Finally, chapter 8 reflects on the work done and
highlights the most challenging tasks completed. Section 8.1 explores additional features that
could be implemented in the future.
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Chapter 2

Background

2.1 Issie technology stack
The compiler is built on top of the existing Issie software, so it is important to have an insight into
the Issie infrastructure and the advantages of using the given frameworks, tools and programming
languages to implement the compiler.

Issie is a 36K line cross-platform application mainly written in F# [7]. Issie runs on top of
the Electron [8] software framework, which embeds Node.js [9] and Chromium [10], hence enabling
the developers to use web technologies to create desktop apps [8]. To run the F# files, these are
converted to JavaScript files using the Fable [11] transpiler, which allows the application to run in
the Chromium browser. To make sure that Issie works on all major operating systems, the .NET
[12] framework and the NPM [13] package manager software are used.

2.1.1 F#
F# is an open source cross-platform [7] functional programming language. F# allows developers to
write succinct, robust and highly performant code [14]. F# - as many other functional programming
languages – is concise: its minimalistic and streamlined syntax is devoid of unnecessary elements
such as curly brackets and semicolons, thus reducing the level of “noise” present [15]. The strongly
typed nature and the expressiveness of the language allows the developer to write correct code
easily and spend less time on debugging and more on the implementation, which makes it a great
language to use for large projects such as the Issie Verilog compiler. Another important feature
of F# is that objects are immutable by default [14] which is particularly great for developing a
compiler where the Abstract Syntax Tree (AST) is a constant data structure. Having an immutable
AST avoids the problem of accidentally mutating the data.

2.1.2 Fable
Fable is a general-purpose F# to JavaScript compiler. Using Fable, code written in F# can run
anywhere JavaScript runs [11], which is how the Issie F# project can run inside the Chromium
browser. The main advantage of using Fable is that the developers can leverage the benefits of the
F# language discussed above as well as the speed of JavaScript programs.

2.1.3 Elmish MVU
Issie comprises more than 60 modules which implement a single component Elmish Model-View-
Update (MVU) [16] application (see Figure 2.1) hence the Verilog compiler also has to follow this
form. This pattern contains the state of the application in a single Model type, and it separates
the internal state changes from the UI controls [17] which enables the developer to focus on the
internal logic of the software rather than the UI and front-end parts. In this architecture Messages
represent the events that can change the state of the Model, for example the user interface can
trigger Messages. The Update function returns the next state based on the triggered Message and
the current state, and the Render or View function builds the user interface from the current state
[18]. The MVU is advantageous, since the separation of the UI and the state makes the code easy
to maintain and test, and it also simplifies the debugging process since the UI and the internal logic
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can be tested independently. This pattern makes the state of the application clear and predictable,
which reduces the possibilities for errors. On the other hand, in real world application, the MVU
gets complicated as the size of messages and the length of the update function get large [19].

Figure 2.1: Model-View-Update pattern [17]

2.2 Verilog and SystemVerilog overview
Verilog is a hardware description language (HDL) that is used to model the behaviour of hardware
and SystemVerilog is an extension of it which comes with many useful features compared to Verilog
[20]. Verilog is used to simulate, test and verify digital electronic designs [21] and it provides a
means to describe the interconnection and hierarchy of various components in a digital system. The
semantics and syntax of Verilog form important background to this project, and so are reviewed
below.

2.2.1 Data types
The SystemVerilog value set consists of the following basic logical values [22]:

• 0 – represents logic 0 or false condition

• 1 – represents logic 1 or a true condition

• x – represents an unknown logic value

• z – high impedance state

As Issie allows only two states (0 or 1), the focus was on these two states when designing the
compiler (see section 4.2).

The two main groups of data objects are nets and variables. Nets are used to connect different
hardware entities [23], they represent wires and they do not store their value. Nets can be written
by one or more continuous assignments [22] (described in subsection 2.2.3). The most important
net data object is wire

Variables on the other hand can be driven by procedural statements (see subsection 2.2.4) or
by a single continuous assignment. The most important data types are reg and the SystemVerilog
logic [24]. The issue with using the reg type is that beginners often assume that it always
represents a piece of storage [25], which is not true, as it can also represent a wire if it is driven
by combinational logic.

All wire, reg and logic are by default unsigned, 1 bit wide (scalar) [26] and they are all 4-state
data types. The bit data type available in SystemVerilog is the 2-state equivalent of logic. These
data objects can take the signed modifier, and they can also be declared as vectors to represent
buses.

2.2.2 Expression widths
SystemVerilog determines the width of an expression based on the bit lengths of the operands and
by the context of the expression [22]. Self-determined expressions are expressions whose bit length
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is solely dependent on the expression itself, whereas context determined expressions are expressions
where the length of the expression is dependent on the bit length of the expression itself as well
as by the fact that it is part of another expression [22]. The operand widths of a self-determined
expression are never extended [27]. The steps for evaluating an expression are the following [22]:

1. Determine the right-hand side expression (and every subexpression) bit length based on the
standard rules of expression size determination

2. Determine the signedness of the right hand side expression

3. Propagate the size and type of the expression down to the context-determined nodes. Any
context determined operand should be the same size and type as the result of the operator.

4. An operand should be sign extended only if it is signed.

When evaluating an assignment, the width of the left-hand side of the assignment is part of
the context, so the size of the expression will be the maximum of the left hand side width and the
expression width, and this width will be propagated down to the context determined nodes. See
Appendix A for expression bit lengths of the different operators.

2.2.3 Combinational logic – continuous assignments

Continuous assignments change the value of the left-hand-side variable (scalar or vector) whenever
the value of the variables in the right-hand-side logical expression changes [28], hence, Verilog can
describe complex logical circuits with a simple textual representation. An example for continuous
assignments can be seen in Listing 2.1.

1 wire x, y, z;
2 assign x = y | z;

Listing 2.1: Continuous assignment for an OR gate

Verilog also supports net declaration statements or implicit continuous assignments. Implicit
continuous assignments allow the assignment to be done when the net is declared [29] shown in
Listing 2.2.

1 wire y, z;
2 wire x = y | z;

Listing 2.2: Implicit continuous assignment for an OR gate

2.2.4 Sequential blocks and procedural statements

Verilog also supports procedural blocks in which the statements are executed sequentially. Pro-
cedural blocks include the initial, always and final blocks. Note that the initial and final
blocks are non-synthesizable constructs [30]. The general syntax for always blocks can be found in
Listing 2.3.

1 // Syntax for always blocks
2 always @(event) // sensitivity list
3 {statement}

Listing 2.3: Always block syntax

The always block can also include multiple statements, in this case the statements must be
enclosed by the begin and end keywords. Always blocks are executed at an event specified by the
sensitivity list [31].

Always blocks can be combinational or sequential (clocked). Sequential always blocks that are
given a clock signal generally behave as flip-flops: for example, they become active on the positive
edge of the clock. Combinational always statements are similar to the continuous assignments:
whenever a variable in the inputs changes, the combinational always block becomes active.

The always block can have blocking or non-blocking assignments. In the case of blocking
assignments, the right hand side expression is evaluated, and it is assigned to the left hand side
variable and the next line of code will be executed after this. When there is a non-blocking
assignment, the right hand side expression is evaluated first and the left hand side variable will
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only be updated at the end of the always block. In continuous assignments, the “wire” data type
can be used for the left-hand side, whereas in always blocks the “reg” type must be used [32].

In general, mixing blocking and non-blocking assignments should be avoided because when
they are mixed, it is up to the synthesis tool to decide how they will be synthesised [33], hence
combinational and sequential logic should be separated. In combinational always blocks one should
use blocking assignments and in clocked always blocks non-blocking assignments should be used
as shown in Listing 2.4 and Listing 2.5.

1 module m1 ( input a,
2 input b,
3 output reg c );
4 always @(*) begin // sensitivity list - any change on the RHS
5 c = a | b;
6 end

Listing 2.4: Combinational always block with blocking assignment

1 module m1 ( input clk ,
2 input rst ,
3 output reg counter );
4 always @(posedge clk) begin // sensitivity list - any change on the RHS
5 if(!rst)
6 counter <= 0;
7 else
8 counter <= counter + 1;
9 end

Listing 2.5: Clocked always block with non-blocking assignments

Always blocks can also contain case statements and conditional statements. SystemVerilog
also provides always_comb and always_ff blocks. The always_comb block is a much improved
version of always @*, which makes it much safer to use than the plain always construct and
hence always_comb is always preferred to always @*. The plain always @* can cause unexpected
behaviour, for example with function calls as seen in Listing 2.6 [34]. The always_ff construct
is used to model sequential flip-flop behaviour. The always_ff procedure only allows exactly one
event control in the sensitivity list[34]. Always_comb and always_ff also report an error if any of
their left hand side variables are written to in any other always blocks [34].

1 // unexpected behaviour with plain always
2 module test;
3 logic a, b, c, always_d , always_comb_d;
4

5 function logic my_func(input logic m_c);
6 my_func = a | b | m_c;
7 endfunction
8

9 always @* // this will only trigger when the value of c changes and not when
a and b change

10 always_d = my_func(c);
11

12 always_comb
13 always_comb_d = my_func(c); // this will trigger if any of a, b and c

changes
14

15 initial begin
16 $monitor("@%0t: a = %d, b = %d, c = %d, always_d = %d, always_com_d = %d",

$time , a, b, c, always_d , always_comb_d);
17 end
18

19 initial begin
20 a = 0;
21 b = 0;
22 c = 0;
23 #10 a = 1;
24 #10 b = 1;
25 #10 c = 1;
26 end
27 endmodule

Listing 2.6: Unexpected behaviour with Verilog always [34]
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2.2.5 Structural Verilog

Structural Verilog connects different blocks of code (modules) and hence achieves a hierarchy in the
design[35]. In structural Verilog the hardware design is split up into modules or components. Each
module has a header which describes the interface of the module, including input and output ports.
The body of the module provides the implementation of the module behaviour [36]. Modules can
be instantiated in other modules using module instantiation statements [37] that specify how the
child component connects to the wires and registers of the parent component’s variables.

The port mapping in module instantiation statements can be named or ordered, as illustrated
in Listing 2.7 [38].

1 module DFF (Q, D, CLK);
2 input D, CLK;
3 output reg Q;
4 always @ (posedge CLK)
5 Q <= D;
6 endmodule
7

8 module SYNCHRO1 (ASYNC ,SYNC ,CLOCK);
9 input ASYNC;

10 input CLOCK;
11 output SYNC;
12 wire C1_ASYNC;
13 // ordered port mapping:
14 DFF DFF1 (C1_ASYNC , ASYNC , CLOCK);
15 DFF DFF2 (SYNC , C1_ASYNC , CLOCK);
16 endmodule
17

18 module SYNCHRO2 (ASYNC , SYNC , CLOCK);
19 input ASYNC;
20 input CLOCK;
21 output SYNC;
22 wire C1_ASYNC;
23 // named port mapping:
24 DFF DFF1 (.D (ASYNC), .CLK (CLOCK), .Q (C1_ASYNC));
25 DFF DFF2 (.D (C1_ASYNC), .Q (SYNC), .CLK (CLOCK));
26 endmodule

Listing 2.7: Named and ordered module instantiation statements [38]

2.2.6 Verilog design principles

The Verilog language grants the user a lot of freedom. To avoid the numerous pitfalls of the
language it is advisable to adhere to the following best practices based on Stuart Sutherland’s
Standard Gotchas - Subtleties in the Verilog and SystemVerilog Standards That Every Engineer
Should Know [39]:

• Separate combinational and sequential logic: in clocked always only use non-blocking as-
signments, in combinational always only use blocking assignments. If there is a blocking
assignment in a clocked always block, it can synthesize to a flip flop or a wire, depending on
the synthesizer [33]

• In SystemVerilog only use always_ff or always_comb instead of always: the @* wildcard
only infers inputs that are directly referenced in the always block

• When an array is needed in the sensitivity list, always_comb or always @* should be used

• Only single bit items should be used with posedge or negedge

• In the always sensitivity list "or" and "|" are different, again need to use always_comb

• Designers need to be sure to assign a default value to each variable in if-else statements and
case statements, otherwise the synthesized hardware might contain latches

• Nested if-else statements might need begin and end for correct behaviour - parser / editor
could potentially help with the indentation
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• Do not have multiple procedural blocks writing to the same variable, always_comb and
always_ff will give an error

• Do not have any duplicate case items in a case statement

• Modularised designs are good

• Use the logic data type to declare all point to point nets (wires or busses), variables driven
by always blocks, all input ports and all output ports [40]

• Use always_comb rather than always_comb @(*) [41]

• Do not use latches, or code that can synthesize to an unexpected latch (it can cause timing
issues) [42]

As Verilog allows developers to compose sub-optimal or unsynthesizable code, the Verilog compiler
project provides a great opportunity to only support a restricted subset of the language by man-
dating the user to adhere to the Verilog best practices. Conforming to these concepts makes sure
that the compiler is aligned with the Issie principles and would make it easier for the students to
learn the concepts of hardware design even without prior knowledge and would teach them good
design principles very early on. Section 4.1 details how some of these best practices apply to the
project.

2.3 Parsing
A large part of compiler design, and the one which determines some of the error messaging, is the
parser. This section reviews parsing technology and discusses the techniques most suitable for this
project.

2.3.1 Terminology: languages and grammars
A language in computer science is a set of sentences of finite length constructed from a finite
alphabet [43] and it can be described by a formal grammar. A grammar is a set of production rules
through which the sentences in the language can be generated [44]. The grammar is composed of
terminal symbols - symbols contained in the sentence generated by the grammar - and nonterminal
symbols which take part in the generation of the sentence but are not part of the generated sentence
[45]. Production rules are rewrite rules that define how a nonterminal symbol can be rewritten as
a string of terminal and nonterminal symbols. Production rules are often of the form α → β which
specifies that the nonterminal α can be rewritten as β.

There are four types of grammars, from the narrowest set to the widest these are regular,
context-free, context-sensitive and recursively enumerable grammars [46], see Figure 2.2. As defin-
ing most arithmetic expressions requires recursive context-free grammars, programming languages
in general – including Verilog – are also defined by recursive context-free grammars. Note that for
semantic error detection and synthesis, the compiler requires the context of the entire SystemVer-
ilog file, hence for these processes context-sensitive logic is needed.

2.3.2 Compilers
A compiler is a program that translates computer code written in one language into an equivalent
program in another language, for example machine code, byte code or a different programming
language [47]. The different phases of a compiler are lexical analysis, syntactic analysis or parsing,
semantic analysis, intermediate code generation, optimisation and code generation [48]. The flow
diagram of these phases can be seen on Figure 2.3

During the lexical analysis, the lexer transforms the source code (stream of characters) into a
stream of tokens[50]. The tokens in the lexer are defined by regular expression. If there are any
errors at the stage of the lexical analysis, a good compiler must give the user meaningful error
messages. According to the Compilers: Principles, Techniques, and Tools [48] using a lexer has
the following advantages:

1. Separate lexical and syntactical analysis allows for simpler design and the compiler will be
more maintainable
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Figure 2.2: The Chomsky hierarchy of grammars

Figure 2.3: Phases of a compiler [49]

2. Improved compiler efficiency

3. Improved compiler portability

After the lexical analysis, the parser takes in the tokens generated by the lexer and turns them
into a tree-like grammatical structure as an abstract syntax tree (AST). The parser describes
the source language using a grammar made up of production rules which use terminals and non-
terminals. Production rules define a structure (left-hand side) from a pattern of terminal and
non-terminal symbols [51]. Terminal symbols are the most elementary symbols in the grammar,
they only appear on the right-hand side of the production rules and non-terminal symbols are
defined using other symbols. A production rule could look like the following: expr ::= expr +
term | expr - term | term . This rule defines expr as either expr + term, or expr - term or
just a term. Similarly to the lexical analysis, the generation of understandable error messages is
crucial in this stage too.

Once the parser generates the AST, the intermediate code generator outputs an intermediate
representation of the code, then the compiler performs machine independent optimisation and
finally the code generator outputs the resulting code in the target language.

In the case of the Issie Verilog compiler, the source language is Verilog (with some SystemVerilog
features) and the target language is an Issie sheet comprised of Issie components. The emphasis
of this project is on developing the parser and handling syntactic and semantic errors well. For
good user experience it is important that the simulations are fast, hence one of the extensions of
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the project is adding optimisation which will include simplifying the AST for a given program so
that the simulator would need to evaluate fewer gates, as well as potentially investigating the use
of an intermediate language that the simulator can run or developing a separate fast simulator for
Verilog inputs.

2.3.3 Parsers overview

One aspect of the project is selecting the right parser, hence the trade-offs of different parsers
were considered. Different parsers were compared based on qualities such as the supported set of
grammars and time complexity.

The parsing methods commonly used by compilers are top-down and bottom-up parsing [48].
Top-down parsers start looking at the highest level of the parse tree and work down from there
to the leaf nodes using the production rules of the grammar, whereas bottom-up parsers start at
the leaf nodes and work up the parse tree by using the production rules of the grammar [52]. In
both cases, the input string is parsed from left to right, one symbol at a time [48]. The hierarchy
of different types of compilers can be seen on Figure 2.4.

Figure 2.4: Hierarchy of parsers [53]

Top-down parsers

Top-down parsers use leftmost derivation [54], which means that the production rule is applied
to the leftmost variable at every step [55]. It is important to note that top-down parsers cannot
handle left recursion and ambiguity [56] hence left recursive grammars need to be transformed.
Top-down parsers are for example recursive descent parsers and LL parsers.

Bottom-up parsers

The bottom-up parsing technique uses rightmost derivation [54] (the production rule is applied to
the rightmost variable at every step [55]). Bottom-up parsing can be done using backtracking, but
usually it is done by a shift reduce parser.

Shift Reduce parsers structure the input string by reducing it to the starting symbol of the
grammar [52]. In bottom-up parsing, at all times the parser has a sequential form of the input
string that is obtained through a series of reductions [57]. This sequential form is split up into
the already parsed symbols – the stack, which can be a mix of terminals and non-terminals – and
the rest of the input that has not been parsed, as seen in Figure 2.5. At every step of parsing,
the parser can either shift the input or do a reduction on the stack [57], which can be seen in
Figure 2.6 and Figure 2.7 where the triangles represent the partial AST structures. When the
parser encounters a syntax error it will report an error back and if there are no more reductions
the parse of the input is returned. Simple shift reduce parsers cannot handle some context-free
grammars: for some constructs, the parser cannot decide if it should do a reduce or a shift step
(shift/reduce conflict) or it can’t decide which possible reduction to do (reduce/reduce conflict)
[48].
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Figure 2.5: Structure of shift reduce parsing [57]

Figure 2.6: Shift reduce parsing shift move [57]

2.3.4 Operator precedence parsers

Operator precedence parsers are simple shift reduce parsers that can parse an operator precedence
grammars, which is a subset of the LR(1) grammars. Operator precedence grammars are grammars
in which the right-hand side of any production rule is not empty and contains no adjacent non-
terminal symbols [58]. These parsers can be fast when there are a lot of operator precedence levels
for binary expressions [59]. However, grammars that are not operator precedence grammars must
be transformed, which would make the implementation of the Verilog parser more complex.

2.3.5 LR parsers

LR(k) parsing (Left to right, Rightmost derivation first) is a type of bottom-up shift reduce
parsing, where k stands for the number of symbols lookahead needed to make the parse decisions.
LR parsers use a stack, an input buffer and an LR parsing table. In all LR parsers, the stack, the
input buffer and the parsing algorithm are the same, the only difference is in the parsing table.

LR parsers are very agreeable since they are not recursive, they do not use backtracking (which
would be computationally expensive), they can parse most programming constructs, and they can
recognise the ambiguities of the grammar [60]. Furthermore, the grammars that can be handled by
LR parsers is a proper superset of the grammars that LL parsers can handle, i.e. LR parsers can
handle a wider range of grammars than LL parsers [48]. LR parsers can also accept left recursion
[61] unlike most top-down parsers, and they process deterministic context-free languages in linear
time in the length of the input string [62].The main disadvantage of LR parsers is that they are
too much work to construct by hand, so a parser generator is needed (for example yacc) [48].

LR(0) parsers are a more advanced version of the shift reduce parser but the simplest of the LR
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Figure 2.7: Shift reduce parsing reduce move [57]

parsers. LR parsers have an internal finite state automaton, which keeps track of all information
about the current parse, including the next possible production rules to use and production rules
in progress. Based on the state machine, a parse table is generated, from which the parser can
decide if a shift or a reduce statement should be done next. Instead of shifting the input as the shift
reduce parser, the LR parser shifts the state [48]. By keeping track of more possibilities as part
of the state machine, the LR parser can avoid some shift/reduce conflicts [48]. However, LR(0)
parsers are too weak, they can only handle a small set of grammars [63].

SLR(1)

Simple LR or SLR(1) parsers improve the problem of shift/reduce conflicts in LR(0) by maintaining
a follow set for every production rule which contains the next possible symbol for that particular
rule. The SLR(1) parser only does a reduce step if the next input token is an element of the follow
set of the reduction rule [63]. This means that the SLR(1) can handle a wider group of grammars
than the LR(0), since this improved parser can describe some grammars that would have caused
a shift/reduce conflict in the LR(0) parser. The SLR(1) parser has very few states, and hence it
is fast to construct [64]. Although SLR(1) is a much improved version of the LR(0) parser, the
SLR(1) parser does not utilise all the information it has – this parser only stores the information
about the next input elements and not what is below the next element on the stack [63] hence the
SLR(1) parser still only works on a small class of grammars [64]. This is what the LR(1) parser
improves on.

CLR

Canonical LR parser or LR(1) is a more advanced and more complex parser than the LR(0) and
SLR(1) parsers. In LR(1) parsers, there is a terminal symbol lookahead for 1 symbol. This extra
information is stored in the states of the automaton: every production rule item has the next
possible symbol. However, this requires splitting up each state, resulting in a large number of
states in the finite automaton. With the one symbol lookahead, the LR(1) parser can make parse
decisions in a lot of cases where SLR(1) cannot, which makes the LR(1) a more powerful parser
[63]. On the other hand since the LR(1) parser splits up the states based on the lookahead symbols
hence the number of states in this parser can be an order of magnitude higher than in the case of
SLR(1) parsers [65] which makes the parser very slow to construct [64].

LALR(1)

The LALR (Look Ahead LR) parser merges similar states in order to reduce the number of states
in the finite automaton [65]. LALR(1) grammars are a subset of LR(1) and a superset of SLR(1)
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grammars [65] which means that the parser is weaker than the LR(1) parser but with a much
smaller state space, and it is more powerful than the SLR(1) parser, they work on the entire class
of LR(1) grammars [64] but they still cannot handle the entire class of context-free grammars.

2.3.6 Earley

The Earley parser is a type of generalised parser [48] which can parse any context free grammars,
including ambiguous ones and left recursion [66]. Generalised parsers also report at runtime where
all the ambiguous points are in the grammar, so the input won’t be parsed incorrectly in silence
[67]. However, this also means that one needs to find an ambiguously parsed input to find out
that the grammar is ambiguous [67]. The biggest advantage of the Earley parser is that it can
process a large group of grammars and so the developer does not need to adhere to restrictions in
the grammar, which makes it easier to write the grammar for Earley parsers compared to other
compiler tools [68]. To handle all context free grammars and to potentially return all possible
parses of a grammar has a cost in the speed: the worst case time complexity of this parser is cubic
in the length of the string and for unambiguous grammars it is quadratic [68]. In the case of the
Issie Verilog compiler this complexity will not be a problem since the size of Verilog programs is
unlikely to be very long so the time taken to parse the input is not going to be significant. Most
Verilog modules written in Issie are expected to be up to around a 100 lines long, however, if
multiple modules can be instantiated in the same file, the block sizes could reach up to 1000 lines.
For the detailed performance evaluation of the compiler, see section 7.2.

2.3.7 Nearley

Nearley is a JavaScript parser that uses the Earley algorithm and is highly optimised for LL(k)
grammars [2]. Nearley can successfully parse any context-free grammars, including left recursion
and ambiguous grammars. One of the biggest advantages of the Nearley parser is the error handling:
it provides detailed error messages which makes debugging easier [2] and it makes it easier for the
developer to also provide good and detailed error messages to the user. Note that Nearley is a
scannerless parser [69], meaning that it does not require the use of a lexer, it simply splits the input
into a stream of characters. The Nearley parser is a suitable choice for the Issie Verilog compiler
because it can handle any context free grammars, so writing the Verilog grammar is simple: there
is no need to refactor the grammar, the standard Verilog grammar can be used and hence it will
make the development quicker. The detailed error handling is also an advantage since it makes it
easier to conform to the Issie principles. As mentioned earlier, the Earley algorithm and hence the
Nearley algorithm has a worse time performance than LR parsers, but for the expected input size
this will not be a problem. Furthermore, Issie already uses Nearley to parse simple Verilog files,
which means that the continuation of using this parser will substantially reduce the development
effort required.

2.3.8 Conclusion

There are many parsers that the Verilog compiler could use. Operator precedence parsers and
LR parsers only support a subset of context free grammars, which means that constructing the
production rules of the parser would be a complex task, since some production rules would have
to be transformed such that the grammar falls into the supported set of grammars. In contrast,
Nearley supports all context-free grammars, which means that the Verilog grammar does not need
to be changed much from the official Verilog grammar, which will save many development hours.
LR parsers such as yacc are very fast, they provide linear time complexity in the length of the
input string whereas the Earley’s algorithm and hence the Nearley parser have a worse performance,
quadratic time complexity for the Verilog grammar. However, this trade-off in performance is not
expected to be an issue since the Issie Verilog programs are not expected to be long. Finally,
the Nearley parser is used in the current Verilog compiler which means that if a different parser
were chosen, the grammar would have to be rewritten for the already supported features, creating
more development hours. Based on these properties of the parsers, the most suitable parser for
the Issie Verilog compiler is Nearley. Choosing Nearley for the Verilog compiler allows for a clean
implementation and fewer development hours spent on implementing the grammar, enabling the
development to focus on perfecting the new features and the error handling.
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2.4 The legacy compiler
This section assesses the features and limitations of the legacy compiler which had been imple-
mented in Issie before the start of the project.

2.4.1 Features

The original Verilog compiler in Issie handles simple Verilog modules. This includes the following
features:

• Input and output port declarations – both old and new (ANSI C) style

• Continuous assignments

• Wire declarations with continuous assignment

• Most combinational logic operators

• Constant indexed bit select

• Bus slices

Along with these features, the compiler generates useful and detailed error messages in the case
of malformed inputs. The errors appear in the form of the incorrect token being underlined and
the error message appearing on hover. Furthermore, the original codebase also implements a table
for extra error messages – these are more detailed error messages that occasionally also contain
suggestions for corrections.

2.4.2 Limitations

Even though the base compiler works correctly for most inputs users are expected to write, the
compiler also exhibits some limitations:

1. Cycles are avoided by not allowing output ports on the right-hand side of assignments and
wires being assigned to in the wire declaration. This means there is no explicit cycle detection.

2. Variable indexed bit select is a key missing feature – this is useful for implementing memories

3. The associativity of most of the logic operators is wrong. For example, 5-1+2 would parse
as 5-(1+2) and result in 2 instead of 6.

4. Missing logical operators including: ==, !=, <, <=, >, >=, no support for multiplication

5. The syntax errors are not always correct or helpful

6. The grammar described by the parser is ambiguous for some inputs

7. No simple net/variable declarations, only wire declaration with continuous assignment

8. Wire is 4-state, so simulation output is not identical to SystemVerilog behaviour

9. The legacy compiler has only been manually tested

10. All assignments and binary operators must have the same bit width on the left-hand side
and the right-hand side

2.4.3 Legacy compiler design

The control flow of the base compiler can be seen on Figure 2.8. When the user updates the Verilog
code in the editor, the updated code is passed in to the Nearley parser which then returns an error
if there is a syntax error present, otherwise it returns the AST in the form of a JSON object [70].
The JSON is then parsed into an F# record structure using a standard JSON parsing function
(Fable.SimpleJSON [71]). Finally, when the user saves their code, the AST is passed to the sheet
creator function, which generates Issie components and connections from the given AST.
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Figure 2.8: Base compiler control flow

As there is no lexer in the compiler, the syntax error messages given by the parser are only
regarding the unexpected character, and it contains information about the expected character (not
tokens). To improve the syntax error messages, the errors returned by the parser are processed in
JavaScript, but this is not safe (for example because JavaScript has no type safety [72]) and the
processed error messages are still not always correct.

The original compiler’s AST data structure can be seen on Figure 2.9. The top level node of
the AST is the VerilogInput which contains the Verilog module ModuleT. The module contains the
PortList and the ModuleItems. A ModuleItem represents either a Statement or a port declaration.
The StatementT in this data structure is always a continuous assignment and hence it contains
an Assignment which stores the LHS and RHS expressions. The module item contains different
optional fields: the field that is Some _ determines the type of the item.

Figure 2.9: UML of the old data structure
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Chapter 3

Requirements capture

This chapter gives a detailed specification of the requirements and objectives of the project. First,
the state of the legacy compiler was assessed which was then discussed with Dr Thomas Clarke,
the core maintainer of Issie, along with the possible features to implement during the project. The
project requirements were finalized based on these discussions while taking into consideration the
Issie principles, as described in chapter 1.

In the case of the Verilog compiler, the Issie principles mean that it is crucial that error handling
is well done (P2): the user must be able to easily identify and correct syntactical and semantic
errors. Using the UI for the Verilog editor should be intuitive to use without training (P1) and the
error messages should also be informative and easy to understand for a complete beginner (P5).

By the end of the project, the compiler needs to support a subset of SystemVerilog. This
restricted set of the HDL must be chosen carefully such that it allows students to describe hardware
in a Verilog-compatible HDL as a bridge to later learning Verilog and encouraging good practices
(discussed in subsection 2.2.6) when using HDL languages, as well as avoiding any unnecessary
complexity in the implementation. The major challenges of this project include providing high
quality error messages to the users, as well as thoroughly evaluating the compiler’s correctness.

The objectives of the project can be summarised as the following set of essential (E) and desired
(D) features:

E1 Determine the exact subset of the language to support as well as decide on additional restric-
tions, conforming to the Issie principles

E2 Add support for combinational always blocks

E3 Implement clocked always blocks

E4 Support blocking and non-blocking assignments

E5 Include multiple statements in an always construct by allowing sequential blocks (begin . . .
end statement)

E6 Support conditional statements

E7 Implement case statements

E8 Add informative error messages for the new features

E9 Fix associativity bug in legacy compiler grammar, described in subsection 2.4.2

E10 Full compatibility with SystemVerilog to allow students to move into real SystemVerilog later

D1 Add support for more language features, such as: structural Verilog (module instantiation
statements), for loops and/or module parameters, arrays

D2 Develop an automated test bench, comparing the outputs to a third party simulator

D3 Improve syntax errors

D4 Add support for variable bit select and potentially variable bus select
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D5 Make sure compiler is extensible and maintainable, so it can be further developed in the future

D6 No grammar ambiguities

D7 Add support for more logical operators such as ==, !=, <, <=, >, >= as well as multiplication

D8 Ensure that the performance of compilation does not degrade the usability of the application

Section 4.1 illustrates the importance of the selected core features, and it describes how the de-
sired features were prioritised during the implementation. Section 4.3 details the further language
restrictions imposed by the Issie compiler.
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Chapter 4

Analysis and design

This chapter discusses the high level design of the compiler, with a focus on the subset of Sys-
temVerilog chosen to be supported.

4.1 Implemented features
Throughout the development process, the supported language concepts were chosen carefully based
on the SystemVerilog design principles described in subsection 2.2.6. The features considered and
their advantages and disadvantages are reviewed in table 4.1.

Feature Advantages / Disadvantages Implemented?

General
always blocks

+ Gets the students used to simple Verilog
– Can describe overly complex hardware such as latches
– always_comb and always_ff are better to use

no

always_comb
blocks

+ Separates combinational logic from clocked
+ Does not allow other procedural blocks or continuous as-

signments writing to its variables
– Only supported by SystemVerilog not by Verilog

yes

always_ff
blocks

+ Separates clocked logic from combinational
+ Does not allow other procedural blocks or continuous as-

signments writing to its variables
– Only supported by SystemVerilog not by Verilog

yes

Conditional
and case
statements

+ Core feature of procedural blocks yes

Sequential
blocks + Core feature of procedural blocks yes

Variable bit
select

+ Core missing feature for Issie
+ Enables the implementation of signle bit multiplexers and

demultiplexers
– Requires a moderate amount of changes in the AST and

the error handling

yes
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Constant
width variable
part select

+ Core missing feature for Issie
+ Would enable the hardware description of N bit multi-

plexers and memories
– Requires a moderate amount of changes in the AST and

the error handling

no

Arrays
+ Core missing feature for Issie
+ Useful for implementing memories programatically
– Rather complex implementation

no

Module in-
stantiation
statements

+ Encourages modularised designs
+ Hardware generation is simple as Issie already supports

this
yes

For loops

+ Along with module parameters, for loops would allow the
Verilog components to be "templated" which is a new
feature to Issie

+ Hardware generation is simple (unrolling the loop) once
always blocks are implemented

– Would mostly be useful if module parameters were also
implemented

no

Module pa-
rameters

+ They would allow Verilog components to be "templated"
+ Not very complex to implement for a single block con-

taining several modules
– Implementation of general module parameters is com-

plex, it would require core Issie types to be updated and
it is not straightforward how to do it

no

Table 4.1: Advantages and disadvantages of the language features considered for the compiler

As the main goal of the project was to add support for procedural blocks (see requirement
capture, chapter 3) it was important to decide what types of always blocks to implement. The
flexibility of general always blocks would allow users to implement unnecessarily complex hardware,
and it would be difficult for beginners to learn to write good Verilog code with such flexibility.
Hence, by the Issie and Verilog principles always blocks need some restrictions:

• Only allow always@* and always @(posedge clk) blocks

• Blocking assignments in combinational always blocks and non-blocking assignments in clocked
always blocks

• Variables cannot be driven by multiple procedural blocks or continuous assignments

These restrictions are identical to the restrictions always_ff and always_comb blocks provide.
As these always blocks are safer to use than the simple always blocks, the more restrictive Sys-
temVerilog always_ff and always_comb blocks were implemented, and simple always blocks are
not supported by the final compiler. The compiler also must support conditional statements, case
statements as well as sequential blocks as these are key constructs when describing hardware in
SystemVerilog. Variable bit select of buses is also an important feature missing from Issie, hence
this is also supported.

Supporting arrays would be a useful enhancement for implementing memories and other data
structures. However, the same functionality can always be achieved by using buses, thus arrays
were not prioritised during the development, and they were not implemented in the final design.
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As modularity of hardware design is essential, adding module instantiation statements to the
compiler was of high priority. An advantage of module instantiation statements is that this is
a standalone feature, in contrast with for loops and module parameters that would mostly be
beneficial if they were implemented together. Module instantiation statements allow the user to
write reusable code by utilising predefined modules across multiple designs. The hierarchy resulting
from the nested structures also allows better description of the relationship between different
components than a flat structure. Simplicity and readability of modularized Verilog components
was also an appealing advantage. Module instantiation statements align with the Issie principles
and even though the application already supports this for the schematic editor, Verilog module
instantiation statements were determined to be a desirable functionality and hence they form a
part of the final feature set.

Finally, for loops with module parameters (constants passed into modules to parameterise
the logic that can define the width of data paths, memory sizes or the characteristics of other
components in the module) are a powerful feature of Verilog. They would provide more flexibility
by enabling the user to reuse the same module with varying configurations without duplicating
the code. Parameterised modules also benefit from scalability and maintainability. However, these
two features should be implemented together; one without the other provides much less flexibility
to the user. Furthermore, after some investigation it was established that the implementation
of module parameters requires changing some of the core types of Issie, making the development
highly complex and so these features were not added to the application. If a single Verilog block
can contain multiple Verilog modules (producing a single top level component), the implementation
complexity can be reduced as the values of the module parameters will be part of the AST, so the
Issie types do not need to be updated anymore. If module parameters were supported this way,
the parameterised modules would be less reusable than in the first case as they can only be reused
in a single block, not across different blocks, hence it was decided that the more restrictive version
of module parameters would also not be supported.

4.2 Supported data types
As discussed in section 2.4, the base compiler only supports the wire data type which works
for continuous assignments, however Verilog requires the use of variables (reg, logic or bit) in
procedural blocks, so one of the important design decisions was to determine which data types
to add support for. Based on subsection 2.2.1 deciding between using wire or reg is confusing for
beginners. Furthermore, one should always use logic as reviewed in subsection 2.2.6 and in the case
of using the logic type, the compiler can infer the correct piece of hardware to generate (register
or wire) instead of expecting the user to do it, potentially incorrectly. However, as the logic type
has 4 states and is initialised to unknown (x), this would cause compatibility issues between Issie
and the language standard [22] since Issie only differentiates between 2 states for each bit: 0 and
1. The 2-state logic in Issie is equivalent to using the bit data type in SystemVerilog, which has
the same advantages of using logic. Hence, even though logic is the more commonly used data
type, to adhere to third party simulators, in the final compiler design solely the bit data type is
supported. According to the SystemVerilog standard, ports without type specifiers are by default
defined as wires [22] thus every variable and port must be declared explicitly as type bit.

4.3 Further language restrictions
As pointed out in subsection 2.2.6, further language restrictions were necessary to enable beginners
to learn quickly and to meet the Issie principles. These restrictions are summarised in table 4.2.

Restriction Verilog principle or other reason

Only blocking assignments in always_comb
and non-blocking assignments in always_ff Separate combinational and sequential logic
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A variable can only be driven by continuous
assignments, a single always block or a module
instantiation statement

Bit cannot be driven by multiple always
blocks. Issie also doesn’t support multi-driver
components

Case statements items must be constants Case items must be known at compile time
according to the SystemVerilog standard [22]

Combinational variables must be assigned to
in every branch of always_comb blocks There are no undefined values in Issie

Clock signal cannot be used other than in the
sensitivity list of always_ff and only posedge
clk is allowed

Otherwise complex hardware could be gener-
ated accidentally. The clock signal is also not
available for use in Issie

No cycles allowed in combinational logic The Issie simulator does not support this

No unused variables or ports It is good practice not to have unnecessary
variables

Variables in an always_comb block must not
be read first and then written

This can create unexpected hardware when
synthesized

No assignments allowed where the assignment
right-hand side width is greater than the left-
hand side expression

Prevents accidental data slicing

Module instantiation ports must be the correct
width

If the user wants to connect the lower bits or
pad the value with zeros, they should be ex-
plicit about it

Module instantiation inputs and outputs must
be primaries, expressions are not allowed

Expression bit lengths are not always obvious
to the user

No duplicate case items in case statement Verilog principle

Table 4.2: Language restrictions imposed and the reasoning behind them

4.4 Lexical analysis

In the base compiler, there is no lexer (see subsection 2.4.3, which means that the Nearley parser
reads the input character by character. As described in subsection 2.3.2 adding a lexer to the
compiler is beneficial in terms of efficiency and maintainability, so it was important to consider
adding a lexer to the Issie compiler. However, the main benefit of adding a lexer in this case
was to improve syntax errors. By tokenizing the input, the parser is able to produce meaningful
syntax error messages. For example, a possible syntax error without the lexer was "Unexpected
character ’x’, expected: ’e’, ’d’". In contrast, with the lexer this error would be: "Unexpected
{IDENTIFIER} token, expected: ’endcase’, ’default’", which is undoubtedly much more helpful
for the user than the previous error. The improved syntax errors also meant that the tedious post-
processing of the generated syntax errors was eliminated, improving the parser’s maintainability.

Even though adding a tokenizer meant that the grammar in the parser had to be significantly
reworked, the remarkable enhancement of the syntax errors was decided to be worth the extra
development time and a lexer was added to the compiler design, see Figure 4.1. When choosing
a lexer, the main priority was compatibility with Nearley. As Nearley supports and recommends
Moo [69], a highly optimised lexer [73], Moo was a good option to pick. There are other lexers
compatible with Nearley [69] but as Moo is the recommended lexer, there are a lot of resources
available on using Nearley with Moo including numerous examples, so for the sake of simplicity
Moo was chosen as the lexer.
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Figure 4.1: Compiler control flow with the lexer

4.5 AST data structure

The Nearley parser returns the AST in JSON format which is then converted into F# records using
the F# JSON library (see section 2.4 for details), with the error handling and the Issie component
generation are done on this same data structure.

In the original data structure Statements are always continuous assignments (either to a wire
or to an input port) so in the new data structure they were renamed to ContinuousAssign. Based
on the SystemVerilog grammar always constructs are a type of module item, so in the new design
a module item (ItemT) is either a port declaration, a continuous assign or an always construct.
An always construct needs to store the type of the block (always_ff or always_comb) and a
Statement. The Statement can then either be a non-blocking assignment, a blocking assignment,
a case statement, a sequential block or a conditional statement. The UML diagram of the planned
data structure can be seen on Figure 4.2.

The old data structure contains many optional fields to represent a parent class that can be
either one of its children. This could be also represented as a DU (discriminated union [74]) in
F#. Handling many Options can make the code less legible. To add a new type of module item,
the old pattern could be used, and an optional AlwaysConstruct field would be added to the
ItemT record. Another possibility is to change the ItemT record into a DU. To do the latter, the
JSON AST would still be parsed into the records using options – as the JSON library cannot
parse into a DU type – but then this intermediate data structure would be converted into a new
data structure that uses DU’s which the rest of the processing would be done on. This would
make the codebase more legible, and it could potentially make it easier to add new features in
the future. However, this requires substantial changes in the current code base, which would take
a significant amount of development hours. Furthermore, converting from one data structure to
the other adds another layer of error handling which also makes the development more complex
and representing the same information with two sets of data structures also adds extra complexity.
Thus, to support procedural blocks, the old pattern with options was used in the project. The
details of how the AST was then processed for error handling and synthesis are discussed in the
Implementation section.

As there are two types of always constructs the compiler must support, the AlwaysType stores
whether the construct is always_ff or always_comb. Another possibility for storing always blocks
was to have separate types for clocked and combinational always blocks. However, since the two
types of procedural blocks are nearly identical for the majority of error handling and hardware
generation, they were represented by a single record to abstract the shared logic.

The structure of the StatementT type was designed similarly to the module items: the vari-
ous optional fields determine the type of the statement. The types NonBlockingAssignment and
BlockingAssignment contain an Assignment so that the common logic between continuous assign-
ments and procedural assignments can be abstracted. Sequential blocks (SeqBlock) represent the
compound statement (set of statements enclosed by ’begin’ and ’end’) and they simply contain an
array of statements. Conditional statements need to store the condition expression, the statement
of the ’if’ branch and an optional statement for the ’else’ branch. Case statements also store a
condition expression as well as an array of case items. Each case item contains an array of case
item expressions along with a single statement to represent a branch of the case statement.

4.6 Hardware generation

For synthesizing the AST, two options were considered. One of them was to follow the base
compiler’s code generation and construct hardware in the form of Issie components; and the other
one was to write a special Verilog simulator that takes in the values at each port in the previous
clock cycle and simply returns the values at the next clock cycle. As both of these alternatives
were feasible solutions, their benefits are discussed in Table 4.3.
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Figure 4.2: UML of the new data structure

Issie component generation Special Verilog simulator

+ It could allow the students to see the gen-
erated hardware and hence understand the
underlying structures

+ By testing the Verilog compiler against third
party simulators also tests the entire Verilog
simulator

+ Enjoyable to implement

+ Straightforward implementation

+ Simple testing, as there is no need to use the
Issie simulator

Table 4.3: The advantages of the two hardware generation alternatives

After considering the advantages of the two options, it was decided that Issie components would
be generated as the educational benefit outweighed the ease of implementation of a special Verilog
simulator.
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4.7 The final product
To summarise this chapter, the final product supports the following language features:

1. Flip-flop-type always_ff blocks

2. Simple combinational always_comb blocks, no cycles allowed

3. Blocking assignments in always_comb blocks

4. Non-blocking assignments in always_ff blocks

5. Variable bit select

6. Variable declarations (type bit)

7. Most operators in Verilog, including multiplication

8. Expression evaluation matching the SystemVerilog rules (see subsection 2.2.2)

9. Module instantiation statements

10. Buses and N bit variables

11. Continuous assignments

12. Port declarations (type bit)

Furthermore, lexical analysis is done before parsing for useful error messages and a performance
boost, and detailed error handling was added for providing helpful semantic error messages with
potential fixes. Chapter 5 describes in detail how the different features were implemented.
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Chapter 5

Implementation

This Chapter discusses how the compiler was implemented, focusing on parsing, semantic error
handling as well as the hardware generation.

5.1 Representing the clock signal

One important design decision of the project was to determine how the clock signal would be
represented. In Issie, there is a single, internal clock signal which is implicitly the input of all
clocked components (for example registers) and this clock signal is not available for reading. Users
also cannot easily define custom clock signals. One option for representing clocked logic in Verilog
was to change this and make the clock signal available for the users. Nonetheless, the development
of this would have been overly complex as the core application logic would have had to be updated
and being able to customize the clock or having to input it to all clocked components would make
the application more difficult to use than it is now. Another option was to follow the current
representation of the clock signal in the Verilog editor too: the clock signal would only appear in
the sensitivity list of the always_ff block and nowhere else (so not in any of the expressions).
The clock signal cannot be a real input of a component in Issie, so it would have been simple
not to allow the clock signal as the input, however, this would create a compatibility issue with
SystemVerilog as the identifier in the sensitivity list of the sequential always blocks would be an
undefined variable.

Hence, for ease of use and compatibility with SystemVerilog, the clock signal is represented as
clk and it must be an input port of the module in order to be used in the sensitivity list of an
always_ff block.

Representing the clock has important considerations regarding module instantiation statements
as well. In Verilog, the clock signal must be contained by the port mappings in case of a clocked
component. Hence, for compatibility reasons, the Issie compiler should handle clocked module
instantiations in the same way. However, the only way to determine if a component is clocked in
Issie currently is by recursively looking through all sheets and components in the project 1. As the
compiler can generate hundreds of components for some inputs, this would significantly increase
the error check and synthesis times, thus it was decided that when instantiating modules in a
Verilog block, the clock signal need not be included in the port mapping.

5.2 Grammar

The base of the grammar used in Issie was the 2017 IEEE standard for SystemVerilog (IEEE
1800-2017 [22]) as this is the most recent stable release available [75]. The complete SystemVerilog
grammar is extremely large and since only a small subset of the language is supported in Issie,
the grammar was simplified and only the relevant production rules were kept. The restrictions
mentioned in section 4.3 above further simplified the grammar.

The new grammar added for always blocks is similar to the grammar described in Listing 5.1
(based on the IEEE Standard for SystemVerilog [22]):

1See here
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1 ALWAYS_CONSTRUCT ::=
2 always_comb STATEMENT
3 | always_ff @ ( posedge clk ) STATEMENT
4

5 BLOCKING_ASSIGNMENT ::= VARIABLE_LVALUE = EXPRESSION
6

7 NONBLOCKING_ASSIGNMENT ::= VARIABLE_LVALUE <= EXPRESSION
8

9 SEQ_BLOCK ::= begin STATEMENT :+ end
10

11 CONDITIONAL_STATEMENT ::= IF ELSE:?
12

13 IF ::= if ( EXPRESSION ) STATEMENT
14 ELSE ::= else STATEMENT
15

16 STATEMENT ::=
17 NONBLOCKING_ASSIGNMENT ;
18 | BLOCKING_ASSIGNMENT ;
19 | SEQ_BLOCK
20 | CONDITIONAL_STATEMENT
21 | CASE_STATEMENT

Listing 5.1: Always grammar

Note that the grammar used enforces some of the restrictions mentioned in section 4.3:

• The production rules only allow for always_ff and always_comb blocks, so no always blocks
allowed

• The sensitivity list of the clocked always blocks must be @(posedge clk)

• The clock signal must be represented by the clk identifier

The grammar could have been more general, and then the above restrictions would have been
implemented as semantic errors. However, this would have meant writing a more complicated set
of production rules as well as extra semantic error handling needed. As the syntax errors provided
by the parser for these restrictions are helpful, it was decided that the grammar would be strict,
and it would already filter out some malformed inputs.

5.2.1 Grammar ambiguity

When writing a parser, it is crucial to make sure the grammar is not ambiguous. Ambiguous
grammar means that there are multiple possible parses for the same piece of input, which means
that some of these parses might be incorrect, so this means that the grammar has possible mistakes
in it and hence grammar ambiguity should be avoided. As discussed in subsection 2.3.7, Nearley
can handle ambiguity gracefully, and it returns all possible parses, which made it rather simple to
see if an input had multiple possible parses. However, the parser does not give a warning or an
error about ambiguity in the grammar, so a lot of care was needed to write the grammar and to
check for ambiguous inputs while testing.

One major issue that caused ambiguity in the base compiler and during development was the
way whitespaces are handled. Whitespaces are parsed as zero or more (or one or more) whitespace
characters, and they must be a part of the Nearley grammar. However, the example in Listing 5.2
introduces ambiguity. Note that _ represents zero or more whitespace characters.

1 ALWAYS_CONSTRUCT ::=
2 always_comb _ STATEMENT _
3 STATEMENT ::=
4 | BLOCKING_ASSIGNMENT _ ; _

Listing 5.2: Ambiguity caused by whitespaces

In this case, both a statement and an always construct can be followed by any number of whites-
paces. In this case, if the input grammar had a single whitespace character after the semicolon in
an always construct, then this input would have two possible parses: one where the whitespace is
part of the ALWAYS_CONSTRUCT rule and one where the whitespace is part of the STATE-
MENT rule. Although both of these parses are correct as it does not matter where the whitespace
belongs, this creates a huge memory footprint as the number of possible parses grows linearly with
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the number of whitespace characters present and combinatorially with the number of ambiguous
rules. As Nearley stores all the possible parses, the memory load can cause the entire app to crash.
Hence, the grammar was written with extreme care to avoid these types of ambiguities and the
ambiguity present in the base parser was also removed.

5.2.2 The dangling if-else problem

The dangling else problem is another problem that causes ambiguity, which occurs when using
nested if statements [76]. Consider the example in Listing 5.3.

1 if(expr1)
2 if(expr2)
3 statement1;
4 else statement2;

Listing 5.3: Code with dangling else

In this case, there is a dangling else, as it is unclear which if statement the else branch belongs
to. The grammar described in section 5.2 is ambiguous in the case of a dangling else: it would
return two possible parses for this example. To resolve this ambiguity, most programming languages
prefer to attach the dangling else to the innermost if statement [48]. To avoid the dangling if-else
problem, two solutions were considered:

1. Require the begin and end keywords for every if/else statement

2. Update the grammar to follow the general rule of attaching the dangling else to the closest
unmatched if statement [48]

Both of these options have their advantages. Requiring the begin and else keywords is very easy
to implement, and this way the user would avoid the dangling else problem overall. Resolving the
ambiguity in the grammar is also not very complex to implement, but it was established to be
better than the first option, as the begin and end keywords can add a lot of extra ’noise’ to the
Verilog code, making it hard to read.

The grammar in section 5.2 was thus updated so that the statement appearing between any if
and else must be matched, i.e. it must not end with an unmatched if statement [48]. Based on
Compilers: Principles, Techniques, and Tools, the unambiguous production rules were written as
shown in Listing 5.4.

1 STATEMENT
2 ::= MATCHED_STATEMENT
3 | OPEN_STATEMENT
4 MATCHED_STATEMENT
5 ::= if ( EXPRESSION ) MATCHED_STATEMENT else MATCHED_STATEMENT
6 | OTHER_STATEMENT
7 OPEN_STATEMENT
8 ::= if ( EXPRESSION ) STATEMENT
9 | if ( EXPRESSION ) MATCHED_STATEMENT else OPENSTATEMENT

Listing 5.4: Solution to the danglin else problem

5.2.3 Module instantiation statements

As described in subsection 2.2.5, the module instantiation statement port mapping can be either
named or ordered. As Issie does not define a specific order in the input and output ports of a
component (they can be on any side of a custom component, in any order the user sets them to)
named port mappings align more with the general Issie logic than the ordered port mappings.
Furthermore, named port mappings make the end user aware of how exactly they are connecting
the components in Verilog designs. Named port mappings also allow for better error messages
in the case of missing ports or width mismatches. Hence, it was decided that only named port
mappings would be supported in the Issie compiler. The grammar needed for supporting module
instantiation statements can be seen in Listing 5.5
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1 MODULE_INSTANTIATION_STATEMENT
2 ::= IDENTIFIER IDENTIFIER ( LIST_OF_PORT_CONNECTIONS ) ;
3 LIST_OF_PORT_CONNECTIONS
4 ::= NAMED_PORT_CONNECTION { , NAMED_PORT_CONNECTION }:*
5 NAMED_PORT_CONNECTION
6 ::= . IDENTIFIER ( MODULE_INSTANTIATION_PRIMARY )
7 // module instantiation primaries are variables or constant bit select

expressions

Listing 5.5: Grammar for module instantiation statements

5.3 User interface
The UI of the Issie Verilog IDE is shown in Figure 5.1. Note that the user interface was not updated
compared to the legacy compiler, except for the extra error message table being permanently visible
next to the text editor. Note that in the case of syntax and semantic errors, dashed red underlines
appear in the Verilog input. The error messages appear superimposed on the editor when hovering
over the red underline. The table on the right of the editor contain a list of extra error messages
that give more detailed information on the errors present. For certain errors, the table also contains
a suggestion. When the user clicks the suggestion, the compiler automatically corrects the input
program.

Figure 5.1: Issie Verilog IDE

5.4 Error handling
This section focuses on the error handling added for processing procedural blocks.

5.4.1 Interacting with the AST

As reviewed in section 4.5, the AST structure is tedious to work with because of the different
optional fields. To make error handling (and hardware generation) easier, an ASTNode type was
added. This type is an F# discriminated union that represents all the nodes in the AST. This
allowed the development of error handling functions that can recursively iterate through the AST
using simple match statements.

To make it even simpler to interact with the data structure, an AST fold function (see Ap-
pendix B) was added. This function is similar to the standard F# fold functions: it takes in a
state of any type, a folder function and an ASTNode. Adding this function abstracted away a lot
of the common logic needed for error handling and reduced the development time needed for error
handling as well as the amount of repeated code compared to working with the raw AST. The
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foldAST makes it easy to execute any function on each node of the AST. For example, getting all
the expression nodes of the tree can be done as shown in Listing 5.6.

1 /// get RHS expressions from always , continuous assign , case stmt ...
2 let getExpressions (expressions: List <ExpressionT >) (node: ASTNode) =
3 match node with
4 | Expression expr ->
5 expressions @ [expr]
6 | _ -> expressions
7 let expressions = foldAST getExpressions [] verilogInput // returns a list of

all the expressions in the tree

Listing 5.6: Getting every expression in the AST using foldAST

5.4.2 Cycle detection

As cycles in combinational logic in Issie are not allowed, the error handling includes checking for
cycles. The dependencies of a combinational circuit form a directed graph. To implement cycle
detection, known graph search algorithms were considered to be used. Both depth first search
(DFS) and breadth first search (BFS) could be suitable for cycle detection, and they have similar
properties. They both have O(E+V) time complexity and O(V) space complexity [77] where E is
the number of edges (number of dependencies, it roughly translates to the number of combinational
assignments) and V is the number of vertices (number of variables used in the module). As DFS
was easier to implement in F#, this graph search method was chosen. The implementation of
findCycleDFS based on [78] is shown in Listing 5.7.

1 type Graph = Map <string , string list >
2 /// Looks for cycles in the general dependency graph using depth first search
3 let findCycleDFS (graph: Graph) : string list option =
4 let rec dfs (node: string) (visited: Set <string >) (recStack: Set <string >) (

path: string list) : string list option =
5 if recStack.Contains(node) then
6 // Cycle detected , return the path as Some
7 Some (node :: path)
8 elif visited.Contains(node) then
9 // Node has already been visited , no cycle found

10 None
11 else
12 // Add the node to the visited and recursion stack sets
13 let visited ' = visited.Add(node)
14 let recStack ' = recStack.Add(node)
15 // Get the neighbors of the current node
16 let neighbors =
17 graph
18 |> Map.tryFind node
19 |> Option.defaultValue []
20 // Recursively visit the neighbors. If a cycle is found , return it

as Some , otherwise None
21 let findCycle =
22 (None , neighbors)
23 ||> List.fold (fun acc neighbor ->
24 match dfs neighbor visited ' recStack ' (node :: path) with
25 | Some cyclePath -> Some cyclePath
26 | None -> acc)
27 findCycle
28

29 // Iterate through all the nodes in the graph and check for cycles
30 graph |> Map.keys
31 |> Seq.tryPick (fun node -> dfs node Set.empty Set.empty [])

Listing 5.7: Cycle detection using DFS

To detect cycles, first a dependency graph must be obtained. This is done by iterating through
the AST and whenever a continuous assignment or an assignment in an always_comb block is
encountered every bit on the right-hand side is added to the graph as a dependency of every
bit on the left-hand side. In the case of if statements and case statements, the bits of all the
variables in the condition expression also form a dependency of the variables assigned to in the
conditional or case statement branches. Assignments in the always_ff blocks are ignored, since
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these assignments represent a flip-flop which breaks a possible cycle. After the dependency graph
is created, a standard DFS algorithm is run to determine if there are cycles. If there are cycles,
their paths are printed out as part of the error message, marked at the end of the module.

Note that often it is not the case that all bits on the left-hand side of an assignment are
dependent on all bits on the right-hand side. For example, in the assignment, a=b; the only
dependency of a[i] is b[i]. However, when the right hand side expression is more complex,
determining a more accurate dependency graph is a lot more complicated to implement than the
method described above. It would also be useful for the user to see the location of the cycle, but as
the cycle consists of numerous variables that can appear in any complex structure of if statements
or case statements, this would have been also very complicated to implement and was decided to
be outside the scope of the project.

5.4.3 Semantic error summary
Table 5.1 details the different error messages. This table contains the error messages appearing in
the editor when hovering over the red underline, as well as the extra error messages appearing in
the extra error message table (described in subsection 2.4.3) next to the editor to provide more
detailed information. In some cases, the extra error message table also contains suggestions. When
the user clicks on the suggestion, the error is automatically corrected in the editor. The location
column describes where the red underline appears.

Error reason Error and extra error message Suggestion Location

Blocking instead
of nonblocking
assignment

"Blocking assignment in always_ff block"
"Blocking assignment in a clocked always
block is not supported. Please use non-
blocking assignments in clocked always
blocks"

Replace ’=’
to ’<=’ ’=’ symbol

Nonblocking in-
stead of blocking
assignment

"Nonblocking assignment in always_comb
block"
"Nonblocking assignment in a combina-
tional always block is not supported.
Please use blocking assignments in com-
binational always blocks"

Replace
’<=’ to ’=’ ’<=’ symbol

Multi-driven vari-
able

"Some ports or variables are driven by
multiple always blocks or continuous as-
signments."
"The following variables are driven by mul-
tiple always blocks or continuous assign-
ments: <list of variables>. Please make
sure that every port is driven by at most
one always block or continuous assign-
ment."

endmodule

Duplicate case
value

"Duplicate case value"
"The following case value is duplicated:
<case item>, see line <line number>.
Please make sure there are no repeated
case values."

Second occur-
rence of case
item

Wrong case item
width

"Width of case value does not match the
given case expression"
"Width of case expression (<x> bits wide)
does not match width of this case item
(<y> bits wide)."

Replace
to correct
width

Affected case
item
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Undefined vari-
able in al-
ways_comb

"Some ports or variables might not always
be assigned to"
"The following variables might be unde-
fined as they are not assigned to in ev-
ery branch of conditional statements or
case statements in the always_comb block:
<list of variables>"

always_comb
keyword of af-
fected block(s)

Undefined refer-
ence to ’clk’

"Variable ’clk’ is not defined as an input
port."
"To use always_ff blocks, please make sure
to include ’clk’ in the port list."

Insert ’in-
put logic
clk;’

’clk’ in sensi-
tivity list

’clk’ output port
"’clk’ must be an input port"
"’clk’ represents the clock signal, which
must be an input port"

Port name

’clk’ variable
"Variable cannot be called ’clk’"
"’clk’ is reserved for the clock signal, please
rename the variable"

Variable name

Wrong clock
width

"’clk’ must have width 1"
"’clk’ represents the clock signal, which
must have width 1, here it has width
<w>"

Port name

Using ’clk’ in ex-
pressions

"Illegal use of ’clk’"
"’clk’ represents the clock signal, make
sure to only use it as ’always_ff @(posedge
clk)’"

’clk’ name in
expression

Cycle in combina-
tional logic

"The following variables form a depen-
dency cycle: <list of variables>"
"The following variables form a cycle:
<list of variables>"

endmodule

Reading then
writing a variable
in always_comb

"Variable written to after it is read"
"The following variables are read and then
updated: <variable name>. This creates
undefined behaviour in an always_comb
block, please make sure to not update a
variable after it is read."

Assignment
left-hand side

Undefined mod-
ule type in mod-
ule instantiation

"Component <name> does not exist"
"Component <name> does not exist -
there is no custom component or Verilog
component with this name"

Replace
to closest
component
name

Module type

Undefined port in
module instantia-
tion

"No such port for the given component"
"The port <port name> does not exist for
component <component name>"

Port identifier

Missing port in
module instantia-
tion

"Missing port(s) for component"
"The port <port name> missing for com-
ponent <component name>"

Module type
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Invalid output
port for module
instantiation

"Output port already driven"
"Output port <port name> in module
<module name> is already driven by con-
tinuous or procedural assignments"

Connected pri-
mary

Incorrect port
width for module
instantiation

"Wrong port width"
"Wrong port width for port <port name>
in module <module name>: <x> bits
wide but expected <y> bits"

Connected pri-
mary

Table 5.1: Summary of semantic error messages

Note that the above table only contains information on the error messages added for the new
feature. The error handling functions of the base compiler are still in use, and they have been
modified to accommodate for procedural blocks and module instantiation statements. For the
details of the rest of the error messages, see Appendix C.

5.5 Hardware generation

The approach adopted for hardware generation involved the creation of a dedicated circuit for each
variable and output port for every node of the AST. This design choice allowed for a modular and
efficient process of circuit construction and updating.

At each node of the AST, the circuits associated with the variables and output ports were up-
dated based on the properties and operations defined by the node. This updating process involved
incorporating the necessary logic gates, registers, and interconnections to reflect the desired func-
tionality and behaviour of the hardware circuit. By leveraging the existing circuits and selectively
modifying them, the overall hardware generation process was streamlined.

Functional programming principles, such as immutability and higher-order functions, were em-
ployed to manipulate the circuits effectively, resulting in an elegant codebase.

5.5.1 Circuit manipulation

In the process of implementing the hardware generation, two different solutions were considered
to handle the storage and updating of circuits for variables. The first solution involved storing
circuits for slices (consecutive bits) of variables, utilizing a mapping structure that linked variables
to their corresponding slices and circuits. This approach would have enabled updating only the
relevant slice of a variable at each assignment, dynamically splitting or merging slices as needed,
which would result in a precise representation of the Verilog input. The main advantage of this
solution is that for some inputs it would generate more easily understandable hardware than the
other solution, hence it would give a better opportunity for students to learn from the underlying
hardware of their Verilog code.

However, upon further evaluation, the second option, which involved storing a single circuit
for the entire variable, was chosen as the preferred solution. This decision was based on several
factors, including ease of implementation. The slice-based approach would have introduced ad-
ditional complexities and challenges, particularly when dealing with conditional statements and
case statements. Implementing these constructs with the slice method would have required addi-
tional development hours and increased code complexity and reduced maintainability. It was also
established that for most Verilog inputs, the two solutions would produce identical hardware, the
difference only occurring for some unusual bit-select or part-select logic that is unlikely to occur.

The single circuit approach involved creating an initial circuit for every variable. This initial
circuit is simply a constant zero of the width of the corresponding variable. Then, at every AST
node, the previous circuit for the relevant variables are updated to create the next circuit; see
Figure 5.2 for the high level design hardware generation flow.

By opting for a single circuit for each variable, the implementation process became streamlined
and straightforward. The entire circuit associated with a variable is updated at each assignment,
ensuring that the desired behaviour and functionality of the variable were consistently maintained.

35



This meant that when generating the Issie components and connections for a node in the AST,
existing circuits associated with variables did not need to be a concern at each node. Although
this approach required updating the entire circuit, the benefits in terms of simplicity and ease
of implementation outweighed the potential overhead in circuit updates of the first option. By
choosing this approach, the hardware generation became more manageable and less prone to errors,
facilitating a more efficient and effective development process.

Figure 5.2: Hardware generation flow chart

5.5.2 Combinational logic

Hardware generation for combinational logic involved associating every combinational variable and
output port with a wire label.

During the compilation process, when a variable appears on the right-hand side of an assign-
ment, the output of the wire label associated with that variable is connected to the relevant circuit.
This ensures that the final value of the variable will be connected to the circuit. The detailed logic
used to traverse and compile the AST are shown in Figure 5.3

Once all the necessary circuits are established, the final step involves connecting each variable’s
circuit to the input of its corresponding wire label. This connection enables the input of the wire
label to receive the value produced by the circuit associated with the variable.

For output ports, the process involves connecting the wire label associated with the output
port to the corresponding output port component. This connection ensures that the value propa-
gated through the wire label would be delivered to the appropriate output port, allowing it to be
externally accessible.

By utilizing this approach, the implementation successfully represented SystemVerilog combi-
national logic, ensuring the accurate representation and functioning of the combinational logic in
the generated hardware circuits.

5.5.3 Sequential logic

The hardware generation for sequential logic is identical to the combinational circuit generation
described above. However, clocked variables are associated with a register instead of a wire label
to ensure the desired sequential behaviour.
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Figure 5.3: Traversing the AST for hardware generation

5.5.4 Expression widths
Following the expression and assignment evaluation rules discussed in subsection 2.2.2, before
hardware generation, the expression widths are determined as follows:

1. Evaluate right-hand side expression by recursively traversing the expression

2. Save the calculated width at each node

3. Determine target width by taking the maximum of LHS width and the RHS width from
before

4. Pass in the target width into the compile function

5. For context determined operators, pass in the target width from before to the recursive
function call. For self-determined operators, pass in the width corresponding to the node of
the operator.

6. After the circuits for context determined operators are created, the circuit is extended to
match the target width if necessary.

Note that as the compiler only supports unsigned variables and integer literals, when a circuit is
extended, it is always padded with zeros and is never sign extended.

5.5.5 Case statements
Case statements in general synthesize to highly optimized decode logic [79]. However, Issie does
not support custom decoders, hence different solutions were considered for the hardware generation
of case statements.

An initial naive implementation translated the case statement into a single N-bit multiplexer,
where N is the number of possible case items. As Issie does not support general Nx1 multiplexers,
this was done have by composing 2×1 multiplexers (or ideally 8×1) multiplexers into an Nx1
multiplexer, as shown in Figure 5.4a. This solution creates O(2M) components where M is the bit
width of the case expression, regardless of the number of case items present in the case statement.
When this implementation was tested with a 16-bit wide case expression and 15 case items (which
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is a realistic example), the whole application crashed during the hardware generation as O(216)
components were being created. Hence, this solution is not feasible since the users could easily
crash the app with a simple case statement.

The final hardware generation implementation of case statements treats case statements the
same way as a set of if-else statements by chaining 2×1 multiplexers in a row, as shown in Fig-
ure 5.4b. This optimized implementation generates O(N) components where N is the number of
case statements. The number of case statements is always at most 2M where M is the bit-width of
the case expression, showing the improvement in complexity. Users can easily write a case state-
ment with a 10 bit case expression but they will not write 210 case statements, hence this solution
is more optimal than the naive implementation.

(a) Naive implementation of case statements. Image
credits [80]

(b) Optimized implementation of case statements.
Image credits [81]

Figure 5.4: Hardware generation options for case statements

5.5.6 Variable bit select

Variable bit select consisted of two tasks:

1. Supporting variable bit select in expressions: a=b[i];

2. Variable bit select on the LHS of assignments: a[i]=b;

The hardware generation for both of these tasks can be implemented in various ways. A naive way
to support 1. is by generating an Nx1 multiplexer for the right hand side variable, which would
select bit i. As Issie only has 2×1, 4×1 and 8×1 multiplexers, this solution would require the
generation of O(N) components where N is the bit width of the variable being indexed (about N
components for the multiplexers and N more for bus selection components that split up the variable
into bits). A more optimal solution can be achieved by manipulating the bits of the indexed circuit
using a set of N-bit logical gates. Given an integer b, the ith bit can be accessed (for reading) as
follows: (b & (1 « i)) » i [82]. The same logic can be used for implementing variable bit selects
in Issie, as seen in Figure 5.5. Note that the variable Shift components are internal components
to Issie. This option always requires the generation of exactly 5 components (constant 1, two shift
components, an AND gate and a bus select) regardless of the widths of the inputs. Hence, this
solution was chosen over the multiplexer solution described above, making the generated hardware
scalable, allowing for fast compilation and simulation of complex circuits.

For 2. similar approaches were considered, and for optimal complexity the solution including N
bit logical gates was chosen in this case too. Given an integer a, the ith bit can be updated to b as
follows: (a & (1 « i)) | (b « i) [83]. The equivalent circuit in Issie is shown in Figure 5.6.

Note that the same logic can be extended to M bit variable bus select by using the constant
2M − 1 instead of the constant 1 in the above circuits.
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Figure 5.5: Variable bit indexing circuit

Figure 5.6: Variable bit indexing circuit

5.5.7 Consecutive wire labels
Issie does not allow two wire label components to be connected via a wire. To join the two wire
labels, there must not be a wire between them, and they must have the same name to form a single
net as shown in Figure 5.7.

(a) Wire labels connected by a wire gives an error (b) Wire labels joined by giving them the same name

Figure 5.7: Wrong wire label connections and the corrected version

As the hardware generation method described in subsection 5.5.2 associates a wire label compo-
nent with each variable and combinational output port declared in the input. Hence, the example
in Listing 5.8 would result in the circuit shown in Figure 5.7a.

1 module m (
2 input in;
3 output out1 , out2;
4 );
5 bit wire1 = in;
6 assign out1 = wire1;
7 assign out2 = wire2;
8 endmodule

Listing 5.8: Verilog input resulting in wire labels connected by wires

To make sure that wires labels are not connected in the generated Issie sheet the final step of
hardware generation is executing graph search on the components and renaming all consecutive
wire label components to share a single name and remove the wires between them. For ease of
implementation, a DFS traversal was chosen to correct the generated components.
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Chapter 6

Testing

6.1 Parser tests and language ambiguity
To verify the correctness of the parser, manual testing was done during the development process.
The abstract syntax tree in JSON format was observed for various testcases. Manual testing in this
case was sufficient, as the functionality of the error handling functions and hardware generation
was extensively tested. If the AST was wrong, some of the unit tests described in section 6.2 and
section 6.3 would fail.

As detailed in subsection 5.2.1, making sure the grammar had no ambiguities was crucial.
Hence, for the hardware generation and semantic error handling unit tests, it was confirmed that
the number of parses was exactly one.

6.2 Error handling
During the development, manual testing was done to verify that the error handling functions
produced the expected error messages. Later extensive unit testing was done which consisted of:

1. Writing malformed inputs

2. Observing the error messages in the application

3. Confirming that the error locations were correct, and the error messages are as expected and
legible

4. Saving the generated error information as reference output

Table 6.1 describes the number of test cases added for the different error messages1. For a
more detailed description of the unit tests, see appendix D. By continuously testing every feature,
it was easy to see if one of the already existing functionalities broke when developing new ones.
Note that all 39 error handling tests pass.

Error tested Number of test cases

Duplicate case item 3

Variable not always assigned to in always_comb 2

Case item width does not match condition width 2

Nonblocking assignment in always_comb 6

Blocking assignment in always_ff 6

Multi-driven variable 4

1The error handling test cases can be seen here
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Using ’clk’ in expression 1

’clk’ output port 1

Undefined reference to ’clk’ 1

Variable called ’clk’ 1

Wrong clock width 1

Cycle in combinational logic 3

Integer literal does not fit in width 3

Out of bounds bit select 3

Reading then writing to a variable 2

Table 6.1: Summary of the semantic error unit tests

6.3 Hardware generation
It was also crucial to verify that in the case of well-formed inputs, the generated hardware achieves
the desired behaviour. Extensive unit testing was done to test hardware generation as well as more
complex integration tests were added. The unit tests in general were small Verilog modules that
test a single feature, whereas the integration tests2 include multiple features, and they represent
common hardware logic, including counters, shift registers, flip-flops.

Table 6.2 describes some of the integration tests added and the features they test. Note that the
hardware generation test cases were based on existing Verilog examples available on the internet
[84] [85] [86].

Test case Behaviour Features tested

Arbiter Generate and repeat a sequence

- always_ff
- always_comb
- if-else construct
- case statement
- logical operators

Counter Synchronous, resetable counter - always_ff
- if-else construct

Gray counter Synchronous, resettable Gray
counter

- always_ff
- continuous assignment
- if-else construct
- concatenation
- constant bitselect
- wire declaration

Magnitude
comparator Compares two 4 bit numbers

- always_comb
- if-else constructs
- nested sequential blocks

2The hardware generation tests can be seen here
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SR flip flop Flip flop
- always_ff
- if-else construct
- case statement

Universal shift
register

Based on the input shifts left,
right or parallel in parallel out

- always_ff
- if-else construct
- case statement
- part-select
- concatenation

Mux with case 2x1 Mux - always_comb
- case statement

Mux with if 2x1 Mux - always_comb
- if-else construct

Parity genera-
tor Generate parity bit - continuous assignment

Table 6.2: Integration tests for synthesis

The testing workflow can be seen in Figure 6.1. Every unit test and integration test consisted
of a single SystemVerilog module along with a set of input values for a number of clock cycles. The
tests were run with the help of a programmatically generated top level Issie sheet that contained
the Verilog component as well as a counter and a ROM for every input, where the ROM contained
the inputs values parsed in, see Figure 6.2. The counter output was connected to the ROM address
inputs and the ROM data outputs were connected to the corresponding input of the Verilog module
under test. Finally, the simulator was run on the top level sheet and the output waveforms were
captured and compared to the reference outputs.

Figure 6.1: Steps of automated testing of synthesis

Figure 6.2: Top level sheet for testing the module ’simple_buffer’
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The reference outputs were generated by Icarus Verilog [3] version 11 (the most recent stable
release) with the flag -g 2012 to use the 2012 revision of the language, enabling SystemVerilog
features such as always_comb and always_ff. To drive the design under test (DUT) with the
given inputs, a top level verilog testbench (or driver) was necessary for each test module. To
simplify the testing, the top level sheets are automatically generated. The driver module also
outputs the waveforms in a JSON format, matching the structure the Issie compiler testbench uses
for capturing the simulation output. The driver and the DUT are then compiled and run by Icarus
Verilog and the output waveforms are saved.

Listing 6.1 shows an example of the automatically generated top level sheet for the DUT
register.

1 module top_module;
2 // instantiating the neccessary variables
3 bit [2:0] in;
4 bit [2:0] in_array [9:0]; // for storing the input values at every clock cycle
5 bit [2:0] out;
6 bit [2:0] out_array [9:0]; // for storing the output values at every clock cycle
7 bit clk;
8 integer i_ , j_;
9 initial begin // this initial block generates the clock - needed for clocked

modules
10 clk =0;
11 repeat (24) begin
12 #1;
13 clk=!clk;
14 end
15 // after the given clock cycles , print out the values of each output port in a

json format:
16 $display("[");
17 $write("{\" Label \": \"out\", \" Values \": [");
18 for(i_=0;i_ <9; i_=i_+1) begin $write("%d, ", out_array[i_]); end
19 $display("%d]}", out_array [9]);
20 $write("]");
21 $finish (0);
22 end
23 initial begin
24 // set the input array with the given input values
25 in_array [0] = 3'd7;
26 in_array [1] = 3'd1;
27 ...
28 in_array [9] = 3'd5;
29 for(j_=0; j_ <10; j_=j_+1) begin
30 in=in_array[j_]; // drive the DUT input port with the jth input value
31 #0.5; // wait for combinational logic in the DUT to update
32 out_array[j_]=out; // save the output port value
33 @(negedge clk);
34 end
35 end
36 register dut (.in(in), .out(out), .clk(clk); // instantiating the DUT
37 endmodule

Listing 6.1: Example Verilog driver for module register

Note that one of the initial blocks drives the clock and at the end of the simulation it prints out
the output values; the other initial block drives the inputs - ensuring that the signals are updated
in the correct order [87]. As Issie abstracts away the complications of timing in combinational
and clocked blocks the timing of driving the inputs of the DUT and sampling the outputs were
different to usual Verilog testbenches. In the DUT the clocked logic always updates at the positive
edge of the clock, so in the testbench, sampling the output is done at the negative edge. However,
to match exactly with the Issie simulation outputs, the inputs must be driven first, then a delay
is needed so that the combinational logic in the DUT can update and then the output values are
sampled. The @(negedge clk) is done after these assignments so that the very first clock cycle is
captured to match the Issie simulation logic.

Module instantiation statements were also tested by the test bench by grouping the modules of
a design in a single directory. However, as described in section 5.1, clocked module instantiation
statements do not take in the clock signal, hence it was not possible to simulate these such tests
with Icarus Verilog. Therefore, clocked module instantiation statements were tested manually.
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6.4 Test results
Table 6.3 summarises the different hardware generation test cases grouped by functionality. The
test cases include both combiational and clocked logic, covering all supported features. Out of the
63 test cases 61 pass.

Functionality Tests passing Number of tests

Counter 6 6

Adder/subtractor 8 8

Comparator 2 2

Decoder/encoder 4 4

Multiplexer 2 2

Demultiplexer 1 1

Flipflops/registers 6 6

Finite State Machine 5 5

Basic logic gates 5 7

Multiplier 5 5

ROM 2 2

Module instantiations 3 3

Other 12 12

Total 61 63

Table 6.3: Test result summary

After observing the generated hardware for the failing tests, it was observed that the generated
hardware was as expected and that the two test cases failing are due to a small bug in the Issie
simulator3. One of the test cases is a simple 1 bit inverter:

1 module jinverter(y,a);
2 output bit y;
3 input bit a;
4 assign y=~a;
5 endmodule

This test case is failing because the width inference for an N bit inverter in the Issie simulator
is wrong, and it outputs a number that is wider than it should be, resulting in different values
compared to Icarus Verilog.

The other test case that does not pass is the following:
1 module three_st (t, i, o);
2 input bit t, i;
3 output bit o;
4 always_comb begin
5 if (~t)
6 o = i;
7 else
8 o = 1'b0;
9 end

10 endmodule

In the Issie compiler, the value of o is always identical to the input i, regardless of the value of t.
The hardware generated contains a similar circuit in Figure 6.3. This sheet inverts a 1 bit constant
1 – that should result in 0, then this is piped into a comparator, comparing to 0. As 0=0, the
output should be 1, however the output of this circuit is 0. This is likely to be also caused by the
N bit inverter width inference problem described above.

3For the GitHub issue regarding the bug, see https://github.com/tomcl/issie/issues/283
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Figure 6.3: Circuit showing simulator bug
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Chapter 7

Evaluation

This chapter evaluates the final product, focusing on the quality of the error messages, the compi-
lation performance as well as the code quality.

7.1 Error messages
To evaluate the quality of the semantic or syntactic error messages, the error messages were ob-
served for various Verilog code snippets. Some of these examples include modules containing
common mistakes [88], some of them are based on the synthesis tests with some manual changes
– removing or adding tokens. Finally, some of these code snippets were generated by ChatGPT
[89] ensuring that the error message evaluation was independent of the feature set implemented.
Section 7.1.16 creates a numerical score system and assigns a score to each example.

Each subsection below contains a code snippet with a syntax or semantic error, followed by the
error message appearing at the location of the error on hover (as described in section 5.3), followed
by the more detailed extra error message that appears in the error table next to the editor. Where
only a single error is given, the extra error message is identical to the in-text error message.

7.1.1 Assign in always blocks

1 module m (input bit a, b, output bit out);
2 always_comb begin
3 assign out = a ^ b;
4 end
5 endmodule

1 Unexpected token 'assign ' at line 4 column 5. Expected: 'if ', 'begin ', 'case ', {
IDENTIFIER}

This syntax error message is very clear, the expected tokens are useful. The compiler could give
more information about how to correct the error. This would require the parser to accept this
input as valid, and an error checking function could provide more information.

7.1.2 Driving the same variable in multiple always blocks

1 module m(input bit a,b, output bit x);
2 always_comb begin
3 x = a ^ b;
4 end
5 always_comb begin
6 x = 1'b0;
7 end
8 endmodule

1 Some ports of variables are driven by multiple always blocks or continuous
assignments

1 The following variables are driven by multiple always blocks or continuous
assignments: x. Please make sure every port is driven by at most one always
block or continuous assignment.
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The error message is clear, the extra error message is detailed. However, the error message and its
location does not tell the user where the multi driven variables are.

7.1.3 Not setting a variable in all paths of an always block

1 module m(input bit xyz ,abc , output bit freq_c);
2 always_comb begin
3 if (xyz == 4'b0010) begin
4 freq_c = abc;
5 end
6 end
7 endmodule

1 Some ports or variables might not always be assigned to

1 The following variables might be undefined as they are not assigned to in every
branch of conditional statements of case statements of the always_comb block:
freq_c

The error message is clear, the explanation of the extra error message is useful. However, the
compiler could suggest a solution to correct the mistake – by giving the option to insert a statement
assigning a default value to the variable in question.

7.1.4 Omitting the ’bit’ specifier

1 module accum (clk , clr , d, q);
2 input clk , clr;
3 input bit [3:0] d;
4 output bit [3:0] q;
5 bit [3:0] tmp;
6 always_ff @(posedge clk)
7 begin
8 if (clr)
9 tmp <= 4'b0000;

10 else
11 tmp <= tmp + d;
12 end
13 assign q = tmp;
14 endmodule

1 Unexpected token "clk" at line 2 col 14. Expected: 'bit '

This syntax error message makes it easy for the user to understand how to correct the problem.
There is no need for improvements.

7.1.5 Blocking assignment in sequential logic

1 module accum (clk , clr , d, q);
2 input bit clk , clr;
3 input bit [3:0] d;
4 output bit [3:0] q;
5 bit [3:0] tmp;
6 always_ff @(posedge clk)
7 begin
8 if (clr)
9 tmp <= 4'b0000;

10 else
11 tmp = tmp + d;
12 end
13 assign q = tmp;
14 endmodule

1 Blocking assignment in always_ff block

1 Blocking assignment in a clocked always block is not supported. Please use
nonblocking assignments in clocked always blocks.

2 Did you mean: <=

The error message is very clear, and the user can solve the problem by simply clicking on the "<="
token to fix the assignment, making this error message excellent.
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7.1.6 Missing semicolon

1 module counter (clk , load , d, q);
2 input bit clk , load;
3 input bit [3:0] d;
4 output bit [3:0] q;
5 bit [3:0] tmp;
6 always_ff @(posedge clk)
7 begin
8 if (load)
9 tmp <= d

10 else
11 tmp <= tmp + 1'b1;
12 end
13 assign q = tmp;
14 endmodule

1 Unexpected token "else" at line 10 col 8. Expected: ';', {OPERATOR}, '['
2 Is the previous line missing a semicolon?

The error message clearly suggests that a semicolon might be missing, hence the mistake is easy
to correct.

7.1.7 Missing clock input

1 module counter (load , d, q);
2 input bit load;
3 input bit [3:0] d;
4 output bit [3:0] q;
5 bit [3:0] tmp;
6 always_ff @(posedge clk)
7 begin
8 if (load)
9 tmp <= d;

10 else
11 tmp <= tmp + 1'b1;
12 end
13 assign q = tmp;
14 endmodule

1 Variable 'clk ' is not defined as an input port

1 To use always_ff blocks please make sure to include 'clk ' in the port list.
2 Did you mean: input bit clk;

The error message is detailed enough to understand what the problem is. When the suggestion is
clicked, ’clk’ is added as an input port, making the error easy to correct.

7.1.8 Missing ’begin’ ... ’else’

1 module jmagnitudeComparator(AEQB , AGTB , ALTB , A, B);
2 output bit AEQB , AGTB , ALTB;
3 input bit [3:0] A, B;
4 always_comb
5 begin
6 if( A == B )
7 AEQB = 1'b1;
8 AGTB = 1'b0;
9 ALTB = 1'b0;

10 else if ( A > B )
11 begin
12 AEQB = 1'b0;
13 AGTB = 1'b1;
14 ALTB = 1'b0;
15 end
16 else
17 begin
18 AEQB = 1'b0;
19 AGTB = 1'b0;
20 ALTB = 1'b1;
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21 end
22 end
23 endmodule

1 Unexpected token "else" at line 10 col 5. Expected: 'end ', 'if ', 'begin ', 'case ', {
IDENTIFIER}

The syntax error is clear and concise. Note that it is not possible for the parser to give a more
accurate error.

7.1.9 Unrecognised module in module instantiation statement

1 module m(a,b);
2 input bit a;
3 output bit b;
4 bufer u1(.a(a), .b(b)); // Undeclared module
5 endmodule

1 Component 'bufer ' does not exist

1 Component 'bufer ' does not exist - there is no custom component or Verilog
component with this name

2 Did you mean: buffer

The error message describes the problem clearly. If there is a module with a similar name, a
suggestion appears with the possible module name. The error is user-friendly as it helps correct
typos in module names.

7.1.10 Incorrect bit width

1 module IncorrectBitwidth(a,b);
2 input bit [3:0] a;
3 output bit [2:0] b;
4

5 assign b = a; // Mismatched bitwidths for assignment
6 endmodule

1 The RHS expression (4 bits wide) doesn 't fit in the variable on the LHS (3 bits
wide)

This error message prevents users from losing data by accidentally slicing variables, reducing the
probability of a bug existing in the module. The error message is clear.

7.1.11 Cycles in combinational logic

1 module InfiniteLoop ();
2 bit a;
3 always_comb begin
4 a = ~a; // Infinite loop
5 end
6 endmodule

1 The following variables form a dependency cycle: [a[0];a[0]]

This error message appears at the end of the module and not at the affected variables, hence this
error message could be improved. It might not be obvious for a beginner what the problem is and
how to best fix it from the error message.

7.1.12 Redefined signal

1 module RedefinedSignal ();
2 bit a;
3 bit a; // Signal 'a' is redefined
4 assign a = 1'b0;
5 endmodule

1 Identifier 'a' is already used by another variable.
2 Please use a different name for this variable.

Helpful error message that describes the problem in an easy-to-understand manner.
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7.1.13 Missing ’endmodule’

1 module ModuleWithoutEndmodule;
2 bit a;
3 always_ff @(posedge clk) begin
4 a = ~a;
5 end
6 // Missing 'endmodule '

1 Unexpected end of input. Missing endmodule?

Note that in the legacy compiler, this threw an uncaught exception. The error message clearly
states that the input is incomplete and tells the user that the endmodule token might be missing,
making the mistake easy to correct.

7.1.14 Invalid sensitivity list in always_ff

1 module ModuleWithIncorrectSensitivityList ();
2 bit clk , reset;
3 bit [3:0] count;
4 always_ff @(reset) begin // Error: Incorrect sensitivity list , should be posedge

clk
5 if (reset)
6 count <= 0;
7 else
8 count <= count + 1;
9 end

10 endmodule

1 Unexpected token "reset" at line 4 col 15. Expected: 'posedge '

This syntax error gives a clear indication of what token the user should write next in the sensitivity
list.

7.1.15 Duplicate port in module instantiation

1 module TopModule(output bit [1:0] out);
2 bit [1:0] a, b;
3 buffer inst (.in(a), .in(b), .out(out)); // Error: Non -unique port names
4 endmodule

1 Duplicate port

1 Duplicate port name 'in ' for module buffer

The error contains all the details necessary for correcting the mistake.

7.1.16 Overall comments on error messages
To evaluate the overall quality of the error messages, a score system from 1-5 was created and each
example above was given a score based on the helpfulness of the error message. Table 7.1 describes
the score system and Table 7.2 contains the scores assigned to each error message discussed above.
Note that an error message assigned a score of 5+ means that the quality of the error message was
outstanding.

The mean score of the errors was 4.67, suggesting that based on the examples above, most
syntactic and semantic error messages provide useful information to the users, enabling beginner
and advanced users to work in Verilog efficiently. The compiler occasionally gives suggestions that
allow the user to correct the error with a single button click. Some of the error messages shown
could be improved but overall, the error messages are all of high quality and are explained in a
way that makes them easy to correct, meeting the Issie principles, see chapter 1. User testing was
not done as part of the evaluation, as the user interface of the compiler did not change during the
project.
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Score Meaning

5 Easy to understand and correct and/or there is no way to
give a better error message

4 The error message was useful, but there are some minor
improvements possible

3 Gives some detail about the error but difficult to resolve

2 Gives no information about the error

1 Misinforms the user

Table 7.1: Error score rating system

Example Score

Assign in always block 4

Driving the same variable in multiple always blocks 4

Not setting a variable in all paths of an always block 4

Omitting the ’bit’ specifier 5

Blocking assignment in sequential logic 5+

Missing semicolon 5

Missing clock input 5+

Missing ’begin’ ... ’else’ 5

Unrecognised module in module instantiation statement 5+

Incorrect bit width 5

Cycles in combinational logic 3

Redefined signal 5

Missing ’endmodule’ 5

Invalid sensitivity list in always_ff 5

Duplicate port in module instantiation 5

Mean 4.67

Table 7.2: Error message scores

7.2 Compiler performance

Evaluating the compiler’s performance was also of great importance: fast compilation is necessary
for a seamless user experience. Figure 7.1 describes the time needed for parsing, error detection
and synthesis for the tests detailed in section 6.3. The performance tests were executed on a 12th
Gen Intel® Core™ i7-12700H 2.30 GHz CPU. The graphs show a roughly linear trend between
the time taken and the number of lines in the input (but this might not be the case for more
complex modules, parsing with Nearley can have quadratic worst case time complexity as seen
in subsection 2.3.6). For all the test cases the total compilation time is below 35ms which is
sufficiently small. Parsing and error checking is done per character written in the input, in total
these take less than 25ms. Productive typing speed is 300 characters per minute [90], equivalent
to one character per 200ms, which is much greater than the parse and error detection time, which
also means that the parsing speed will be fast enough for much larger inputs. Based on the linear
relationship between both the parse time and the error check time relative to the input length, it
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is estimated that blocks up to 1000 lines can be parsed within 200ms. Synthesis takes up to 12ms
for programs of size 0–120 lines, which is much below the 250ms average human reaction time to
visual stimulus [91]. As the synthesis is only done once the user clicks the update button, the
synthesis seems nearly immediate for the users.

Figure 7.1: Time needed for parsing, error detection and synthesis with respect to the number of
lines in the input

Note that based on Figure 7.1 the synthesis time exhibits irregular patterns. This behaviour
can be attributed to the fact that the module’s complexity is not solely determined by the number
of lines it contains. Figure 7.2 displays the relationship between the synthesis time and the number
of components generated, showing a linear correlation.

7.3 Code quality
As the Issie compiler is expected to be further developed by other students, ensuring the compiler’s
maintainability and extensibility was a crucial aspect of the project. This section evaluates the
quality of the delivered code by comparing them to the Issie coding guidelines [92].

7.3.1 Code quality and the Issie guidelines

Types

Using appropriate types in the compiler is important as it affects the entire code base. Records were
used to model the nodes of the abstract syntax tree, encapsulating the pieces of data that belong
together: for example the condition, the if statement and the else statement in a conditional state-
ment. DUs were used to represent the different cases of the general AST node, which allowed for
easy to read match statements in the error detection and hardware generation functions. Optional
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Figure 7.2: Time needed for parsing with respect to the number of components generated

fields were used in the AST nodes where it made sense to use them, such as representing the default
statement in a case statement. The new types added during the project do not introduce more
mutually recursive types. In the entire compiler, no mutable data was used, preventing potential
bugs. The built-in List and Array types were used in the AST and in the functions operating on
the AST, whereas the Map type was used in some cases for better lookup performance, for example
to represent the dependency graph for checking for cycles in combinational logic.

Names

Most functions and variables in the compiler were given meaningful names, that are descriptive
but not too long, making the code concise and readable. The code base uses pipes extensively to
break up operations into smaller steps for legibility.

Functions

Library functions, such as the List and Map functions, were used in the compiler as much as
possible and anonymous functions were used when the function is small and just reading it gives
enough information to understand it. Higher order functions were used across error handling and
hardware generation. One of the most notable functions used frequently was the foldAST function
that recursively iterates through the given AST node, calling the function passed in as a parameter
on each child node in the tree. The use of this and many other functions abstracted away a lot of
common logic, making the code in the main error handling and hardware generation functions easy
to read. Using recursion was necessary to handle the AST, but the library map, collect and fold
functions were used instead of recursion where possible. As users can input malformed data, it was
crucial to use tryFind instead of find and match statements on Options instead of Option.get,
making the compiler robust.

Documentation

According to the Issie guidelines, the best way to document F# code is by adding XML comments,
which is why the most important functions in error handling and synthesis have XML comments
describing their functionality in a couple of lines. Furthermore, the Issie wiki has been extended
with necessary information about the final compiler1.

7.3.2 Extensibility
This section evaluates the extensibility of the compiler by rating the difficulty of adding some of
the desirable features mentioned in section 4.1 that have not been implemented yet. For detailed
steps on adding new features, see the compiler documentation.

1See: https://github.com/tomcl/issie/wiki/Verilog-Component
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Adding for loops

To add for loops to the compiler, the grammar must be modified. This is straightforward, as
the entire SystemVerilog grammar is available in the SystemVerilog language standard [22]. To
support for loops inside an always block, a new type of statement node must be added to the AST
records. Before the error handling functions are called, the for loops must be checked for semantic
correctness. If they are correct, the for loop must be unrolled into a list of statements and then
the error handling and the hardware generation can be called without needing any changes in the
code.

Supporting multiple modules per block

Updating the grammar and the AST to support multiple modules in a single file is very simple:
using the Nearley :+ EBNF operator [93] in the grammar would allow the description of 1 or
modules in a single code block. The AST would have to be modified to contain a list of modules
instead of a single module. Before the start of the error handling, the hierarchy of the modules
must be established, determining the root node and the dependencies using graph search as well
as detecting any errors in the module hierarchy, such as cycles or multiple root nodes. This should
also be straightforward to do, as the general DFS graph search function used for detecting cycles in
combinational logic can be used to detect cycles in the module dependencies. After the hierarchy is
established, the error check functions can be called on each module in the block, requiring no further
update to the error handling. The sheet creation needs a similar update, where the hardware for
each module must be generated and the logic for handling module instantiation statements must
be modified as the modules in the open editor are not loaded component, so the sheet creator must
generate a flat structure out of the AST.

Module parameters – multiple modules per block

After multiple modules per block are implemented, adding module parameters is also straightfor-
ward. The main error handling function and the sheet creator functions must take in the list of
module parameters and their values, then the error check and sheet create functions must use the
values of these constants where necessary.

7.3.3 Bug fixing and adding tests

During the testing phase, a few minor bugs were identified which were fixed without difficulty,
showing the maintainability of the code. Furthermore, adding testcases is also straightforward:
the developer can simply add a Verilog file into the test case input directory, along with a JSON
file that contains the values of the input ports of the module at each clock tick. Then, the driver
file is automatically generated, and the reference outputs are created by Icarus Verilog.

7.3.4 Overall thoughts on maintainability and extensibility

The compiler code base uses a lot of good functional programming practices and it clearly meets
the Issie coding guidelines, allowing for a legible codebase. By adding a lexer to the compiler as well
as a fully automated test-bench, the maintainability of the compiler was greatly improved. The
numerous test cases will ensure in the future that any changes to the code do not inadvertently
break the existing functionality. The compiler’s extensibility is demonstrated by the fact that
potential future features described above can be implemented with minimal development effort,
thanks to the extensive reusability of the existing code.

7.4 Reflection on the requirements

This section revisits the project requirements laid out in chapter 3, referring to the identifiers
(Essential and Desired) of the initial objectives.

E1 The exact subset of Verilog the compiler supports was chosen as described in section 4.1,
considering the Issie principles
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E2-E3 The final compiler supports both clocked and combinational always blocks. Combinational
always blocks give users more freedom when describing combinational logic compared to
using simple continuous assignment statements. Sequential always blocks enable users to
describe clocked logic, which is crucial as most real world hardware projects are clocked.
Always blocks allow for easy implementation of various hardware blocks including counters,
registers, flip-flops.

E4 Blocking assignments in combinational always blocks and non-blocking assignments in clocked
always blocks are supported, ensuring that the generated hardware is a mix of combinational
and D flip-flop type logic, not allowing the description of unexpected pieces of hardware,
such as latches.

E5 Sequential blocks have been added, as these are necessary for describing complex circuits in
SystemVerilog.

E6-E7 If statements and case statements were implemented, making it possible for users to pro-
grammatically describe encoders, decoders, multiplexers, demultiplexers, resettable logic as
well as comparators. Case statements in combinational always blocks allow users to imple-
ment read only memories and finite state machines.

E8 The error messages added are informative and conform to the Issie principles, with occasional
suggestions for automatic semantic error correction.

E9 The parser is implemented with the correct operator associativity, the bug from the legacy
compiler has been fixed, and the new operators also follow the correct associativity.

E10 The compiler is mostly compatible with SystemVerilog which is proven by the comparison
with Icarus Verilog simulation outputs. Clocked module instantiation statements are not
compatible with the language standard as seen in section 5.1, but every other supported
feature is.

D1 Modules can be instantiated within Verilog blocks, allowing for hierarchical designs. The
module instantiation statements allow users to include both Issie and Verilog modules within
Verilog blocks. This means that every feature that is available in Issie schematic editor is
also available to use in the Issie Verilog compiler. For example, arrays are not supported by
the compiler, but by instantiating a RAM component in Verilog, the users can have a RAM
in Verilog modules as well.

D2 A fully automated test bench was implemented which compares the Issie simulation outputs
to Icarus Verilog outputs. Extensive testing was done to ensure the functional correctness
and maintainability of the compiler.

D3 The syntax error messages were greatly improved by having added a tokenizer to the compiler

D4 Variable single bit select is supported. Variable bus select has not been implemented.

D5 The compiler is extensible as seen in the examples in subsection 7.3.2 and maintainability is
ensured by adhering to the Issie coding guidelines as well as by developing reusable, higher
order functions such as foldAST. The maintainability of the parser was improved by the
addition of the lexer.

D6 The grammar ambiguities of the legacy compiler were removed, and the dangling if-else prob-
lem is avoided by the parser. The syntactically valid test cases were inspected for ambiguity,
and none of them had multiple possible parses.

D7 The ==, !=, <, <=, >, >= to allow the end users to write meaningful if and case statements.

D8 Parsing, error detection and hardware generation are significantly faster than the threshold of
human perception (see section 7.2), enabling a frustration-free user experience

In conclusion, the compiler successfully meets all the core requirements, E1-E10. The desirable
features D2-D8 have also been implemented. Desirable feature D1 has been partially met, with the
implementation of module instantiation statements. The future implementation of for loops and
module parameters are discussed in section 8.1. The implemented features conform to the Issie
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principles: the error messages are easy to understand and correct, see section 7.1 and the final
feature set provides a SystemVerilog IDE and synthesizer that is easy to use for both beginner and
advanced users. The compiler was found to be sufficiently fast and the correctness of the compiler
was thoroughly tested, hence the compiler can be merged into the main branch of Issie and used
for teaching SystemVerilog for the first year students.
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Chapter 8

Conclusions and further work

In conclusion, throughout this project the Issie SystemVerilog compiler was enhanced by providing
support for behavioural Verilog – both clocked and combinational always blocks, as well as struc-
tural Verilog. The main focus of the project was adding meaningful error messages in an effort of
making Issie easier to use for students than third party synthesizers and simulators such as Icarus
Verilog or Quartus. This was ensured through the evaluation of the error messages against the Issie
principles, whereas the functional correctness of the entire compiler was guaranteed by extensive
testing.

One of the most remarkable actions undertaken in this project was adding a lexer before the
parser (see section 4.4) which significantly improved the syntax errors and ameliorated maintain-
ability of the code-base. The improved syntax errors facilitated the compiler’s adherence to the
Issie principles.

Another significant part of the project was implementing the hardware generation test-bench.
By automating these tests, the development and testing of new features became extremely simple.
Comparing the Issie simulation outputs to Icarus Verilog outputs did not only check the correctness
of the SystemVerilog compiler but also of a large part of the Issie simulator. The extensive testing
led to the discovery of a few bugs in the simulator, as seen in section 6.4. More importantly, the
testing confirmed that the Issie simulator’s behaviour is correct in most cases as it aligns with the
third party simulator.

Finally, another notable development detail of the compiler was the implementation of graph
algorithms, described in subsection 5.4.2 and section about consecutive wire labels. Implementing
depth first search for detecting cycles in combinational logic was a challenging but interesting task
to do in a functional programming language.

As every software project has its limitations, the Issie Verilog compiler is no exception. One
of the main limitations of the compiler is a bug in the editor: when the lines in the input are too
long to fit in the box, the red underlines of the error messages get misaligned. As the focus of the
project was mostly on parsing and error handling, making significant changes to the user interface
was outside the scope of the project. Furthermore, the hardware generated by the compiler is not
at all optimised, resulting in circuits of over 100 components in some cases for a single Verilog
module. Although this did not cause any performance or other issues in the simulator for the test
cases analysed, in the future when more complex Verilog structures are supported, optimisation of
the generated hardware might be necessary for responsive simulation of Verilog components.

All the core requirements in chapter 3 have been met, enabling users to implement various
hardware components in SystemVerilog including multiplexers, counters, finite state machines,
registers and arithmetic-logic units using always_comb and always_ff constructs, conditional and
case statements. Using module instantiation statements the students can use any Issie custom
component or other Verilog component within a Verilog module facilitating the (mostly) program-
matic implementation of complex digital circuits such as CPUs. section 8.1 details the features
future students can implement to further enhance the Issie SystemVerilog compiler.

8.1 Future work

One very powerful feature to be implemented later is for loops with module parameters. By allow-
ing multiple module parameters in a single Verilog block, the development of module parameters
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in a single block is straightforward and the high level steps of implementation are described in
subsection 7.3.2. These features would enable users to create templated modules as well as effec-
tively minimize code repetition within Verilog designs. Another important feature the compiler
should support is variable bus select as well as arrays so that users can easily implement general
ROM and RAM components. To add arrays and variable bus select, the grammar must be slightly
modified, as well as the AST. Furthermore, certain error handling functions have to be modified.
Hardware generation requires a minor change, which is straightforward to do.

Parallel to this project, a fast Issie simulator has been implemented by final year student Yujie
Wang at Imperial College London (A high performance digital circuit simulator for ISSIE 1). To
improve the simulation speed of Verilog components, merging the two projects is essential.

As described in section 4.6, it could be beneficial for students to look at the underlying hardware
of their Verilog designs. Currently, the Issie sheets generated by the compiler are very hard
to understand, as the components are placed arbitrarily and wires are not routed intelligently.
Consequently, future work should encompass the implementation of an Issie sheet beautifier, as
well as the addition of a UI option to view the generated sheet.

Furthermore, to allow the Issie compiler to be used by a wide range of students or other individ-
uals, implementing SystemVerilog assertions is of great importance. By incorporating assertions,
Issie could become the primary design and test benching software for various modules within the
Electrical Engineering department at Imperial College London. These modules, including the year
two Instruction Set Architectures, would greatly benefit from utilizing Issie in their coursework.
A team of students taking the 2023 High Level Programming module added assertions to Issie2.
Merging this functionality into Issie would allow for an easy implementation of SystemVerilog as-
sertions by modifying the sheet creator to instantiate assertion components in the generated sheet
in the case of assertions in the Verilog test bench.

8.2 Summary
After considering the accomplishments, evaluation, and constraints of the undertaken work, it can
be concluded that this project was successful, as evidenced by the enhanced functionality of Issie
resulting from the compiler implementation.

The implementation of the project can be found here, with detailed documentation here.

1See: https://github.com/tomcl/issie/tree/yw2919-simulator/version2
2The repository is found here: https://github.com/Jpnock/hlp23-team3/blob/team3/README-FEATURES-TEAM3.

md
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Appendix A

Expression bit lengths

Table A.1 describes the bit lengths resulting from different types of expressions. Note that L(i)
represents the bit length of operand i.

Figure A.1: Bit lengths resulting from self-determined expressions [22]
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Appendix B

FoldAST

1 /// Recursively folds over an ASTNode , calling folder at every level. Only
explores parts where there are multiple possibilities within a Node

2 let rec foldAST folder state (node:ASTNode) =
3 let state ' = folder state node
4 match node with
5 | VerilogInput input ->
6 foldAST folder state ' (Module(input.Module))
7 | Module m ->
8 foldAST folder state ' (ModuleItems(m.ModuleItems))
9 | ModuleItems items ->

10 items.ItemList
11 |> Array.map (fun item -> Item(item))
12 |> Array.fold (foldAST folder) state '
13 | Item item ->
14 foldAST folder state ' (getItem item)
15 | AlwaysConstruct always ->
16 foldAST folder state ' (Statement(always.Statement))
17 | Statement statement ->
18 statement
19 |> getAlwaysStatement
20 |> statementToNode
21 |> foldAST folder state '
22 | SeqBlock seqBlock ->
23 seqBlock.Statements
24 |> Array.map (fun s -> Statement(s))
25 |> Array.fold (foldAST folder) state '
26 | Case case ->
27 let newState = foldAST folder state ' (Expression(case.Expression))
28 let newState ' =
29 case.CaseItems
30 |> Array.map (fun item -> CaseItem(item))
31 |> Array.fold (foldAST folder) newState
32 match case.Default with
33 | Some stmt -> foldAST folder newState ' (Statement(stmt))
34 | _ -> newState '
35 | CaseItem caseItem ->
36 let newstate =
37 caseItem.Expressions
38 |> Array.map (fun expr -> Number expr)
39 |> Array.fold (foldAST folder) state '
40 foldAST folder newstate (Statement(caseItem.Statement))
41 | Conditional cond ->
42 let tmpState =
43 IfStatement(cond.IfStatement)
44 |> foldAST folder state '
45 match cond.ElseStatement with
46 | Some elseStmt -> List.fold (foldAST folder) tmpState [Statement(

elseStmt)]
47 | _ -> tmpState
48 | ContinuousAssign assign ->
49 foldAST folder state ' (Assignment(assign.Assignment))
50 | Assignment assign ->
51 (foldAST folder state ' (AssignmentLHS(assign.LHS)), (Expression(assign.

RHS)))
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52 ||> foldAST folder
53 | NonBlockingAssign nonblocking ->
54 foldAST folder state ' (Assignment(nonblocking.Assignment))
55 | BlockingAssign blocking ->
56 foldAST folder state ' (Assignment(blocking.Assignment))
57 | IfStatement ifstmt ->
58 (foldAST folder state ' (Expression(ifstmt.Condition)), (Statement(ifstmt

.Statement)))
59 ||> foldAST folder
60 | AssignmentLHS lhs ->
61 match lhs.VariableBitSelect with
62 | Some expr ->
63 foldAST folder state ' (Expression(expr))
64 | _ -> state '
65 | _ ->
66 state '

Listing B.1: The implementation of the foldAST higher order function
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Appendix C

Semantic error messages

Table C.1 contains a list of the error messages implemented by the legacy compiler.

Error reason Error and extra error message Suggestion Location

Duplicate port
"Ports must have different names"
"Name x has already been used for a port.
Please use a different name"

No direction
given for port

"Port x is not declared either as input or
output"
"Port x must be declared as input or out-
put"

Insert ’in-
put bit x;’
or ’output
bit x;’"

Unused input
port

"Variable x is defined as an input port but
is not used"
"Variable x is defined as an input port but
is not used. Please delete it if it is not
needed"

Location of x

Port missing from
module header

"Port x is not defined as a port in the mod-
ule declaration"
"Port x is not defined as a port. Please
define it in the module declaration"

Location of x

Duplicate port
definition

"Port x is already defined"
"Port x is already defined" Location of x

Incorrect range in
declaration

"Wrong width declaration"
"A port’s width can’t be ’[a:b]’. Correct
form: [X:0]"

Location of
the range

Module name al-
ready exists

"A sheet/component with that name al-
ready exists"
"Module Name must be different from ex-
isting Sheets/Components"

Module name

Verilog com-
ponent’s name
modified

"Verilog component’s name cannot be
changed "
"Module Name of Verilog component can-
not be changed"

Replace to
old name Module name

Unassigned out-
put ports

"All output ports must be assigned"
"The following ports are declared but not
assigned: <list of ports>"

Insert as-
sign x =
1’b0;

endmodule
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Variable already
defined

"Variable x is already used by a port"
"Variable x is declared as an input/output
port. Please use a different name for this
wire"

x

Wrong width in
declaration

"Wrong width declaration"
"A port’s width can’t be ’[a:b]’. Correct
form: [X:0]"

Range

Out of bounds in-
dex in expr.

"Out of bounds index/range for variable
x"
"Variablex is defined as <range>". There-
fore, <wrong range> is invalid."

range

Undefined vari-
able in expr

"Variable x is not declared as an output
port"
"Variable x is not declared as an output
port"

output bit
x; x

Variable declared
after it is used

"Variable x is defined after this assign-
ment"
"Move the definition of variable x above
this line"

x

Table C.1: Summary of semantic error messages, mainly from the legacy compiler
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Appendix D

Semantic error message unit tests

Test case Error tested

always_comb_case_repeated Duplicate case item

always_comb_case_vars_undef Variable not always assigned to in always_comb
block

always_comb_case_wrong_width Case item width does not match condition width

always_comb_if_vars_undef Variable not always assigned to in always_comb
block

always_comb_nonblocking_case_default Nonblocking assignment in always_comb

always_comb_nonblocking_case Nonblocking assignment in always_comb

always_comb_nonblocking_cond_else Nonblocking assignment in always_comb

always_comb_nonblocking_cond Nonblocking assignment in always_comb

always_comb_nonblocking_seqblock Nonblocking assignment in always_comb

always_comb_nonblocking Nonblocking assignment in always_comb

always_comb_repeated_case Duplicate case item

always_ff_blocking_case_default Blocking assignment in always_ff block

always_ff_blocking_case Blocking assignment in always_ff block

always_ff_blocking_cond_else Blocking assignment in always_ff block

always_ff_blocking_cond Blocking assignment in always_ff block

always_ff_blocking_seqblock Blocking assignment in always_ff block

always_ff_blocking Blocking assignment in always_ff block

always_ff_case_wrong_width Case item width does not match condition width

always_ff_repeated_case Duplicate case item

always_ff_vars_driven_sim Multi-driven variable

always_ff_vars_driven_sim2 Multi-driven variable
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always_ff_vars_driven_sim3 Multi-driven variable

always_ff_vars_driven_sim4 Multi-driven variable

clk_expression Using ’clk’ in expression

clk_output ’clk’ output port

clk_undefined Undefined reference to ’clk’

clk_variable Variable called ’clk’

clk_wrong_width Wrong clock width

cycle_always_comb Cycle in combinational logic

cycle_cont_assign_always Cycle in combinational logic

cycle_cont_assign Cycle in combinational logic

expression_0_number_width Integer literal with width 0 in expression

expression_out_of_bounds Out of bounds bit select

expression_wrong_number_width Integer literal does not fit in width

expression_wrong_number_width2 Integer literal does not fit in width

expression_wrong_number_width_rhs Out of bounds bit select

expression_wrong_number_width_rhs2 Out of bounds bit select

variable_written_after_read Reading then writing to a variable

variable_written_after_read2 Reading then writing to a variable

variable_written_twice Variable written twice in always_ff

Table D.1: Unit tests for semantic errors
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