
Imperial College London

Department of Electrical and Electronic Engineering

Final Year Project Report 2023

Project Title: A High Performance Digital Circuit Simulator for ISSIE

Student: Yujie Wang

CID: 01714652

Course: Electronic and Information Engineering

Project Supervisor: Dr Thomas Clarke

Second Marker: Dr Christos Papavassiliou

Final Report Plagiarism Statement

I affirm that I have submitted, or will submit, an electronic copy of my final year project

report to the provided EEE link.

I affirm that I have submitted, or will submit, an identical electronic copy of my final

year project to the provided Blackboard module for Plagiarism checking.

I affirm that I have provided explicit references for all the material in my Final Report

that is not authored by me, but is represented as my own work.

I have used GitHub Copilot and ChatGPT as an aid in the preparation of my report.

I have used GitHub Copilot to generate Latex template code for my report. I have used

ChatGPT v4 to improve the quality of my English throughout. However all technical content

and references comes from my original text.

1

Acknowledgements

I would like to express my sincere gratitude to Dr. Thomas Clarke for his guidance, support,

and supervision throughout this project.

Abstract

ISSIE is a successful CAD tool used for teaching undergraduates digital circuit design. How-

ever, its current simulation engine suffers from slow performance on large circuits. This

project aims to develop an enhanced simulator to address this issue. The new simulator aims

to achieve significant improvements in time and memory complexity, providing a speedup of

at least 10 times and 10 times more memory efficiency compared to the existing simulator.

Additionally, technical debts present in the current implementation will be addressed. The

new simulator should be compatible with existing functionality in ISSIE and maintain ro-

bustness and reliability. The emphasis will be on enhancing logic simulation, which is more

crucial for user experience compared to symbolic simulation. Overall, the new simulator

meets the specified requirements and offers improved performance and maintainability.

Contents

1 Introduction 5

1.1 Project Motivation . 5

1.2 Report Structure . 5

2 Background 7

2.1 Tech Stack . 7

2.1.1 Elmish . 7

2.1.2 FSharp(F#) . 8

2.1.3 JavaScript . 8

2.1.4 Fable . 9

2.1.5 Electron . 9

2.1.6 V8 Engine . 10

2.1.7 Git . 10

2.2 Data Structures . 11

2.2.1 Types Used in Schematic Editor . 11

2.2.2 Types Used in Simulation . 12

2.3 Algorithms . 14

3 Requirements Capture 17

3.1 Problem of the Current Implementation . 17

3.1.1 Insufficient Performance . 17

3.1.2 Technical Debts . 17

3.2 Requirements for the New Simulator . 18

4 Implementation 20

4.1 Stage 1: Clearing Technical Debts . 20

4.1.1 Removal of Deprecated Code . 20

4.1.2 Bug Fixes . 21

4.2 Stage 2: Logic Simulation Only Simulator 21

4.2.1 New Representation for Simulation Data 22

1

4.3 Stage 3: Numeric Array . 22

4.3.1 Static width inference . 24

4.3.2 Updated IOArray . 24

4.4 Stage 4: Extensions . 26

4.4.1 Memory Compression . 26

4.4.2 Compression methods . 27

4.4.3 New Read and Write Operations for UInt32Step 28

4.4.4 WebAssembly . 31

5 Testing 33

5.1 Automated Correctness Test . 34

5.2 Manual Correctness Test . 34

6 Results 35

6.1 Simulation Speed Benchmark . 36

6.2 Memory Usage Benchmark . 38

6.3 More Profilings . 42

6.3.1 Time Spent on Garbage Collection (GC) 42

6.3.2 Average Number of Ignition Bytecode 44

7 Evaluation 46

8 Conclusion and Future Work 47

2

List of Figures

1.1 ISSIE simulating EEP1 on a laptop with Apple M2 chip. 6

2.1 High level overview of the V8 engine pipeline [19]. 11

2.2 Schematic of a simple circuit that outputs C = A ∧B, D = ¬B. 12

2.3 A simple circuit that outputs B = ¬A. 15

2.4 Illustration of how simulation data (StepArray) is shared between inputs and

their corresponding outputs in Figure 2.3 in FastSimulation. 15

2.5 Illustration of how different components in Figure 2.2 are linked in CanvasState. 16

4.1 Difference between StepArray<FData> and IOArray 23

4.2 IOArray with typed arrays to store data in logic simulation. 25

4.3 Difference between StepArray<FData> and IOArray 26

4.4 Layout of 12-bit data using dense compression. 27

4.5 Layout of 12-bit data using sparse compression. 28

4.6 Layout of 7-bit data in Uint32Array, Uint16Array and Uint8Array. 28

4.7 Illustration of how to extract an arbitrary data in a UInt32Step 29

6.1 Screenshots of Electron simulation speed benchmark 36

6.2 Speed up of simulation speed on different versions of the simulator compared

to the Baseline. 37

6.4 Heap size of FastSimulation (in MB) in different versions of ISSIE at different

stages of step simulation. Blue line is Baseline simulator, yellow line is Version

1, green line is Version 2 and red line is Version 3. 38

6.3 Screenshots of Memory Panel in Chrome DevTools. 39

6.5 Heap usage of FastSimulation and total heap usage (in kB) in different versions

of ISSIE after simulating eep1 for 20000 clockTicks, plotted using data from

Table 6.3 and Table 6.2. Blue line is total heap usage and yellow line is heap

usage of FastSimulation. 40

6.6 Total time spent on garbage collection and total time spent (measured with

--gc-stat flag) to simulate 1E6 clock ticks with maxArraySize = 1E5. . . . 43

3

6.7 Total time spent to simulate 1E6 clock ticks with maxArraySize = 1E5, mea-

sured with and without --gc-stat flag . 43

6.8 Average number of Ignition byte code that FastReduce.fastReduce takes to

simulate one component for one tick. 45

1 Memory snapshot of v0 simulator with StepArray highlighted. 48

2 Memory snapshot of v1 simulator with IOArray highlighted. 48

3 Memory snapshot of v2 simulator with IOArray highlighted. 49

4 Duration of each GC operation (on top) and change of size of used Heap

memory (on bottom) during profiling task and in subsection 6.3.1 for Baseline

simulator. 49

5 Duration of each GC operation (on top) and change of size of used Heap

memory (on bottom) during profiling task and in subsection 6.3.1 for Version

1 simulator. 50

6 Duration of each GC operation (on top) and change of size of used Heap

memory (on bottom) during profiling task and in subsection 6.3.1 for Version

2 simulator. 50

7 Duration of each GC operation (on top) and change of size of used Heap

memory (on bottom) during profiling task and in subsection 6.3.1 for Version

3 simulator. 51

4

Chapter 1

Introduction

1.1 Project Motivation

ISSIE[7] is a highly successful CAD tool for teaching undergraduates - with aspirations to

be of use professionally using Verilog input etc. Its simulation engine is critical for accept-

able performance on large circuits. The current simulator uses a very interesting algorithm

section 2.3 which is for a number of reasons slower than it should be (detailed in subsec-

tion 3.1.1).

On typical computer, the existing simulator can process about 3000 component times

tick per millisecond. This is not fast enough for large circuits and long runs. For example,

simulating a design with 104 components for 106 clock cycles would take about one hour to

finish.

This project therefore aims to create an enhanced simulator, building upon the founda-

tion of the existing one, with a specific emphasis on achieving significant time complexity

improvements (at least a ×10 speedup in simulation speed). In addition, the new simulator

should also improves memory efficiency, enabling the simulation of larger designs and the

retention of long simulation history for backtracking.

1.2 Report Structure

This report will first go through the background of the project, including its tech stack

and the core data structures and algorithms used in the simulator. Then it will discuss

the performance bottlenecks in the existing simulator and how the new simulator addresses

them. After that, the report will discuss the implementation details of the new simulator

in stages, including the extensions that have been added to this project to explore future

directions. Then, the later chapters will cover how testing and benchmark are done to ensure

the functional correctness of the new simulator, and measure its performance. Finally, the

5

Figure 1.1: ISSIE simulating EEP1 on a laptop with Apple M2 chip.

report will discuss the evaluation of the new simulator and conclude the project with a

summary of the project and future work.

6

Chapter 2

Background

This section will first go through the tech stack used by ISSIE, then gives a brief introduction

to the data structure and algorithms used in the current implementation of ISSIE simulator.

2.1 Tech Stack

In brief, ISSIE is built upon the Elmish [12] architecture, the core logic of ISSIE is imple-

mented in FSharp [13] and expose to React [22] for user interface, these FSharp code will be

compiled to JavaScript [8] during build time by Fable [14]. Also during build time, the gen-

erated JavaScript code will be bundled by Webpack [32] and be integrated into an Electron

[4] application. At runtime, the Electron application will use Chromium V8 [27] engine to

executes JavaScript code.

2.1.1 Elmish

Elmish is a functional programming library for building user interfaces in FSharp. It provides

a model-update-view architecture, similar to the Elm Architecture in Elm [11] programming

language. The idea behind Elmish is to allow developers to build web applications in a

functional, type-safe, and predictable manner. Elmish follows the principles of functional

reactive programming (FRP) and provides a set of primitives and abstractions to manage

application state and update the UI in response to user actions and events. Elmish can be

used with a variety of front-end frameworks, such as React and Blazor and has become a

popular choice for developing modern, scalable, and maintainable web applications in FSharp.

7

2.1.2 FSharp(F#)

FSharp is a functional-first, multi-paradigm programming language that was developed by

Microsoft. It is a member of the ML family of languages.

Its strong-typed nature and powerful type inference system makes it best suitable to be

used in projects like ISSIE that put robustness and maintainability at first place.

ISSIE coding guideline discourages the use of mutable fields because they make data

and control flow difficult to understand and mutable variables are against the functional

programming paradigm. However, there does exist a couple of special mutable fields in

the simulation states for performance consideration. For large scale circuit simulation which

involves both large amount of components and large amount of simulation steps, copying and

creating immutable states in the simulation in each iteration would lead to an unacceptable

performance penalty. For example, increment one element in an immutable list of 1000

element would need to copy the entire list with the target element updated.

Therefore, mutable fields such as ClockTick are introduced to allow low-cost updating

of simulation data.

2.1.3 JavaScript

JavaScript is a high-level, single-threaded, dynamic language that is widely used for creating

interactive and responsive web applications [18]. It was originally developed by Netscape in

the mid-1990s and is now supported by all modern web browsers.

ISSIE is transpiled to JavaScript to be able to run on most platforms using Electron 2.1.5.

This maximises reachability of ISSIE to its target customers in education sector.

JavaScript possesses several interesting features, the following sections will give a brief

overview to some of them that are encountered in this project.

Type Coercion

The dynamic nature of JavaScript implies that variables in JavaScript are not assigned specific

types, and certain operators, like the + operator, contribute to this dynamic behaviour,

making it somewhat unpredictable. For instance, the + operator can be used to add two

numeric values, such as 1 + 2, but it can also be employed to concatenate strings or combine

a string with a numeric value, as illustrated in Listing 1.

Numeric Types

JavaScript has two numeric types, Number and BigInt. Number represent numeric value

using IEEE-754 double-precision format [20], this means it only support integer of 52 bits

(mantissa in double-precision format has 52 bits), from −(253 − 1) to 253 − 1. BigInt can

8

var a = 1 + 2; // a = 3

var b = 1 + "a"; // b = "1a"

var c = 1.1 + "a"; // c = "1.1a"

var d = "a" + "b"; // d = "ab"

Listing 1: Different use cases of JavaScript + operator.

represent integers with arbitrary magnitude [2]. Unlike Number whose arithmetic compu-

tation can be performed using hardware as most modern CPUs support double-precision

arithmetics, arithmetics of BigInt are implemented in software [1] as no CPU has register to

hold data of any length.

Array Types

JavaScript also has two types of arrays: Array and typed arrays. The former can store any

JavaScript objects, while elements of the latter are raw binary values of supported numeric

types, e.g. 8-bit unsigned integer, 32-bit unsigned integer, 32-bit floating point number.

Error Handling

Zero division in JavaScript e.g. 42/0 results Infinity because division of JavaScript Number

is performed according to IEEE-754 binary double-precision arithmetic [9].

2.1.4 Fable

Fable is a FSharp to JavaScript transpiler that allows developers to write web applications

and services using the functional-first FSharp language. It allows developers to take advan-

tage of the many benefits that FSharp provides, such as strong type-checking, functional

programming, and its powerful type inference system, while also being able to run their code

in web browsers or JavaScript environments.

2.1.5 Electron

Electron is an open-source framework for building cross-platform desktop applications using

web technologies, such as HTML, CSS, and JavaScript. Electron allows developers to create

native-looking applications for Windows, macOS and Linux with a single codebase. It uses

Chromium as the web rendering engine and Node.js for server-side scripting, providing access

to the full suite of Node.js APIs.

9

With its simplicity and compatibility, Electron have made it the best choice for developing

ISSIE which aims to provide first-class experience for all modern operating systems and

devices.

Two changes in recent releases of Electron limit the total size of simulation data to 4 GB,

both are compile time options for V8.

Since Electron V14, pointer compression [21] is enabled which improves performance by

reducing the size of pointers on 64-bit platforms but restricts heap memory of each v8 process

to 4 GB.

Since Electron V21, sandboxed pointers [29][28] is enabled which protects V8 from mem-

ory corruption but blocks use of off-heap memory as backing store to hold ArrayBuffer.

2.1.6 V8 Engine

V8 is Google’s open source high-performance Just-in-Time JavaScript and WebAssembly [31]

engine, written in C++. It is used in Chromium and in Node.js, therefore V8 is also the

core dependency of Electron. It implements ECMAScript and WebAssembly, and runs on

Windows, macOS and Linux systems that use x64, ARM or RISC-V processors.

The version of V8 (v10.8) [23] used in the latest ISSIE (v3.0.11) has two different engines

to run JavaScript code, Ignition interpreter and TurboFan optimising compiler. A new mid-

tier compiler maglev is planed to be added in later version of V8.

After been parsed into abstract syntax tree, a given piece of JavaScript code will first

be run by the Ignition interpreter to make sure fast first time response. At the same time,

feedback will be collected to track the type of variables used since variables are not typed in

JavaScript.

If a region of code is repeatedly called and keeps passing type check, it will be spotted

as hot code and will be compiled into optimised machine code by the optimising compiler

TurboFan.

More interestingly, as JavaScript is a dynamically typed language, the type of a variable

appeared in hot code could change and V8 will de-optimise that piece of code for the program

to execute correctly.

2.1.7 Git

ISSIE project is managed by git [16] and hosted on GitHub [5]. This project creates branches

from the master branch by git checkout -b and use git rebase to sync new commits from

master branch. This makes sure no conflicts would be created when the new simulator get

merged into master.

10

Figure 2.1: High level overview of the V8 engine pipeline [19].

2.2 Data Structures

2.2.1 Types Used in Schematic Editor

ISSIE defines three record types as shown in Table 2.1 and Listing 2 to represent components,

wires and ports in schematic editor. They serves three important jobs,

• form a connected graph so that components can be easily found by their ids

• allow design sheets can be easily serialised and deserialised to and from JSON

• contain all information needed to render schematic design sheets and perform simulation

Table 2.1: Record types used to represent circuit schematic.

Type Scope of unique Id Usage
Port Sheet-wise Represent IO ports on components, form two-way

link between ports and components via HostId.
Component Sheet-wise Represent components, allow user created de-

sign sheets to be used in other design sheets as
CustomComponent.

Connection Project-wise Represent directional wires, holds Ids of the two
connected ports.

11

Each design sheet in ISSIE is represented by a CanvasState, which is tuple of a list of

Components and a list of Connections.

Figure 2.2: Schematic of a simple circuit that outputs C = A ∧B, D = ¬B.

2.2.2 Types Used in Simulation

The current implementation of ISSIE simulator uses uint32 as the underlying data type

to store simulation data that has width less than or equal to 32 bit and bigint otherwise.

uint32 is used instead of uint64 because JavaScript does not natively support 64 bit (un-

signed) integers as mentioned in subsection 2.1.3.

Three discriminated union [6] types are defined to provide a unified view to simulation

data. A FSharp discriminated union type can hold heterogeneous data in one of its named

cases. For example, a variable of type FastBits in Listing 3 can either be case Word which

holds a uint32 or case BigWord which holds a bigint.

Table 2.2: Discriminated unions used to represent simulation data

Type Usage
FastBits A unified view to the two underlying numeric types.
FastAlgExp A unified view to the supported algebraic expressions.
FData A unified view to numeric and algebraic simulation data.

These abstraction to simulation data leads to performance overhead. F# discriminated

unions are transpiled to JavaScript objects by Fable therefore arrays of FData are JS Arrays

but not the more efficient Typed arrays. When reading simulation data, each discriminated

union object requires one switch to determine which case a variable is in. Therefore, ex-

traction of simulation data from a FData takes two switch statements. The first switch

determines whether the FData holds a FastData or a FastAlgExp, the second switch identi-

fies whether the FastData holds a uint32 or a bigint. When updating simulation data, three

12

1 type Port = {

2 Id : string

3 // For example, an And would have input ports 0 and 1, and output port 0.

4 // If the port is used in a Connection record as Source or Target, the Number is None.

5 PortNumber : int option

6 PortType : PortType

7 HostId : string

8 }

9

10 type Component = {

11 Id : string // Id uniquely identifies the component within a sheet.

12 Type : ComponentType

13 Label : string // All components have a label that may be empty.

14 InputPorts : Port list // position on this list determines inputPortNumber

15 OutputPorts : Port list // position in this list determines OutputPortNumber

16 X : float

17 Y : float

18 H : float

19 W : float

20 SymbolInfo : SymbolInfo option

21 }

22

23 type Connection = {

24 Id : string // Id uniquely identifies connection globally and is used by library.

25 Source : Port

26 Target : Port

27 Vertices : (float * float * bool) list

28 }

29

30 /// F# data describing the contents of a single schematic sheet.

31 type CanvasState = Component list * Connection list

Listing 2: Core data structures used in schematic editor.

new objects must to be created when updating a FData, a new FastBits, a new FastData

and a new FData.

Simulation history of each component port is store in StepArray, a mutable array that

13

1 type FastBits =

2 | Word of dat: uint32

3 | BigWord of dat: bigint

4

5 type FastData =

6 { Dat: FastBits

7 Width: int }

8

9 type FastAlgExp =

10 | SingleTerm of SimulationIO

11 | DataLiteral of FastData

12 | UnaryExp of Op: UnaryOp * Exp: FastAlgExp

13 | BinaryExp of Exp1: FastAlgExp * Op: BinaryOp * Exp2: FastAlgExp

14 | ComparisonExp of Exp: FastAlgExp * Op: ComparisonOp * uint32

15 | AppendExp of FastAlgExp list

16

17 type FData =

18 | Data of FastData

19 | Alg of FastAlgExp

20

21 type StepArray<'T> =

22 { mutable Step: 'T array

23 Index: int }

Listing 3: Core data structures used in simulation.

acts as a circular buffer storing the value of a signal in simulation up to MaxArraySize steps

which is configured to 550 in SimulationView.Constants module. Its circular nature is im-

plemented by using modulo indexing when read and write its elements, i.e. let res = outputs[ClockTick % MaxArraySize]

2.3 Algorithms

In preparation phase of simulation, ISSIE first parses CanvasState to obtain all involved

components and their connections. In the next step, ISSIE expands CustomComponents to

their underlying Components and create SimulationComponent (an intermediate representa-

tion) for every Component to obtain a flattened graph of simulation components. This graph

is called flatten because it does not contain any nested graph for user defined components.

14

The flatten graph is then used to create FastSimulation where each component is repre-

sented in its final form, FastComponent. Each FastComponent contains StepArrays to store

simulation data of its ports. StepArrays of input ports except those of global inputs are links

to their corresponding outputs as shown in Figure 2.4 to minimise data copying during sim-

ulation. In this stage, ISSIE stores FastComponents into different arrays in FastSimulation

based on their types, e.g. FClockedComps for clocked components. One special array is the

FOrderedComps array which stores components in the order of their dependencies.

FOrderedComps improves overall simulation performance by avoiding dynamically find-

ing connected components during simulation. It allows ISSIE to update outputs and state

of components correctly by just iterating through ordered FastComponent array and call

FastReduce.fastReduce for each of them.

In simulation, ISSIE simulates the entire circuit in three passes for every clock tick. The

first pass is to update the output ports of global inputs. Then, the second pass is to update

the states of AsyncRAM1 components. Finally, the third pass is to update the outputs of all

components.

Figure 2.3: A simple circuit that outputs B = ¬A.

Name: A

ComponentType: Input1

Inputs:

Outputs:

Name: G1

ComponentType: Not

Inputs:

Outputs:

Name: B

ComponentType: Output

Inputs:

Outputs:

StepArray 0 StepArray 1 StepArray 2 StepArray 3

Figure 2.4: Illustration of how simulation data (StepArray) is shared between inputs and
their corresponding outputs in Figure 2.3 in FastSimulation.

15

Id: Comp0

Type: Input1

Label: A

InputPorts:

OutputPorts:

Id: Comp1

Type: Input1

Label: B

InputPorts:

OutputPorts:

Id: Comp2

Type: And

Label: G1

InputPorts:

OutputPorts:

Id: Comp3

Type: Not

Label: G2

InputPorts:

OutputPorts:

Id: Comp4

Type: Output

Label: C

InputPorts:

OutputPorts:

Id: Comp5

Type: Output

Label: D

InputPorts:

OutputPorts:

Id: Port0

PortType: Input

Id: Port1

PortType: Output

Id: Port2

PortType: Input

Id: Port3

PortType: Output

Id: Port4

PortType: Input

Id: Port5

PortType: Input

Id: Port6

PortType: Output

Id: Port7

PortType: Input

Id: Port8

PortType: Output

Id: Port9

PortType: Input

Id: Port10

PortType: Output

Id: Port11

PortType: Input

Id: Port12

PortType: Output

Id: Conn0

Source:

Target:

Id: Conn1

Source:

Target:

Id: Conn2

Source:

Target:

Id: Conn3

Source:

Target:

Id: Conn4

Source:

Target:

Figure 2.5: Illustration of how different components in Figure 2.2 are linked in CanvasState.

16

Chapter 3

Requirements Capture

This chapter focuses on addressing the issues present in the existing ISSIE simulator and

outlining the requirements for the new simulator.

3.1 Problem of the Current Implementation

3.1.1 Insufficient Performance

The existing simulator in ISSIE (Baseline simulator) is already an performant simulator

equipped with many optimising techniques as discussed in section 2.2 and section 2.3.But

the existing simulator only evaluates about 2000 component per millisecond.

The insufficient performance primarily stems from the existing approach compromising

efficiency to provide a universal solution, which is intended to support both symbolic and logic

simulation. For example, ISSIE uses FData to represent simulation data which can either be

a numeric value (FastData) or a symbolic value (FastAlgExp). This design choice makes the

simulator use one more match statement in FastReduce.fastReduce for every component

type to determine whether the component is evaluated under logic simulation or symbolic

simulation. This is a trade-off between performance and generality. The abstraction of

simulation data by FData also leads to the storage of simulation history using array<FData>,

which is not memory efficient as this would be transpiled to JS Arrays instead of the more

efficient typed array.

3.1.2 Technical Debts

Another problem of the existing simulator is the presence of several technical debts. Two

notable examples include:

17

• StepArray was supposed to be a resizeable circular buffer. Thus StepArray would be

initialised with a small length and can increase to a larger length when needed, once all

the elements in the array are used, the array would be overwrite from the beginning.

However, functions that were supposed to resize StepArray but are no longer used

in the simulator. These deprecated functions are confusing to new contributors and

should be removed.

• Output Widths of components are dynamically inferred from components with assigned

widths by calling FastReduce.fastReduce. However, a more optimal approach is avail-

able through the use of BusWidthInferer.inferConnectionsWidth function which can

statically determine all output widths of a given design. To address this technical debt,

the simulator should be refactored to utilise the BusWidthInferer.inferConnectionsWidth

function instead of relying on dynamic inference.

3.2 Requirements for the New Simulator

In order to be a high performance simulator, the new simulator must achieve improved time

complexity (simulation speed) and space complexity (memory efficiency). The requirements

for the new simulator is summarised as follows shown in Table 3.1.

The new simulator will primarily focus on enhancing the performance of logic simulation

rather than symbolic simulation. This emphasis on logic simulation arises from the fact

that the user experience in logic simulation is considerably more reliant on simulation speed

compared to symbolic simulation. This can be attributed to the following reasons:

• Symbolic simulation is only applicable to combinational circuits, which tend to be

smaller in scale, comprising fewer components. In contrast, large circuit designs of-

ten incorporate sequential components to prevent timing failures or implement state

machines.

• Symbolic simulation only needs to be run one clock tick for each design, whereas logic

simulation needs to be run for as many clock ticks as the user’s interest demands.

For instance, a user might use ISSIE to build and simulate a CPU for calculating the

Fibonacci sequence. Consequently, the time spent on symbolic simulation is negligible

when compared to the extensive duration required for logic simulation.

18

Table 3.1: Requirements for the new simulator.

Criteria Qualitative and Quantitative Requirement
Time complexity improvements By removing the overhead of symbolic simulation,

the new logic-simulation only simulator is expected
to be at least 10 times faster than the existing
simulator.

Memory efficiency improvements By employing typed arrays to store simulation
data, the new simulator is expected to be at least
10 times more memory efficient than the existing
simulator.

Reduced technical debts All technical debts mentioned in subsection 3.1.2
should be addressed. No new technical debts
should be introduced.

Compatibility The new simulator should be compatible with ex-
isting functionality in ISSIE. Wave simulator, step
simulator and truth table should be able to cor-
rectly use the new simulator.

Robustness and Reliability The new simulator should be able to handle all
the designs that the existing simulator can handle
and produce the same results. Tests environment
should be setup to allow the new simulator to be
tested against the existing simulator.

19

Chapter 4

Implementation

Implementation of the new simulator is based on the original simulator in ISSIE and consists

4 stages. The first stage aims to clear technical debts of the existing simulator. Then in

the second stage, the logic simulation part of the original simulator is extracted and form

a logic simulation only simulator. The third stage focuses on using numeric arrays to store

simulation data to achieve better performance. Finally, 3 extensions (memory compression,

WASM and direct link across custom component boundary) are done in the fourth stage to

explore different possibilities to further improve the performance of the ISSIE simulator.

The following sections will describe the implementation details of the new simulator and

the optimisation process.

4.1 Stage 1: Clearing Technical Debts

Two types of technical debts are cleared in this stage, deprecated code as mentioned in sub-

section 3.1.2 and Hidden bugs. To enhance maintainability, the simulator code is formatted

using Fantomas [15]. This practice takes inspiration from the V8 project, which enforces

code formatting on all code submissions to ensure consistency throughout the codebase. The

refactored simulator will be referred as Baseline (v0) simulator in this report.

4.1.1 Removal of Deprecated Code

As mentioned in subsection 3.1.2, functions that were used to resize StepArray are removed

to make it clear that StepArray is just a circular buffer and not resizable.

In addition, src/Simulator, src/Common and all the files inside these two directories are

removed as they are no longer used.

20

4.1.2 Bug Fixes

JavaScript is designed to not throw exceptions when error occurs as F# does. This silent

error handling behaviour of JavaScript makes it hard to find bugs in the original simulator

as we do not run or test the simulator on dotnet runtime. In this section, 2 bugs that are

found when running the original simulator on dotnet runtime are described.

Infinite Indexing

JavaScript outputs infinity when a number is divided by zero as mentioned in subsec-

tion 2.1.3. This behaviour is different from the behaviour of F# which throws an exception

when zero division happens. In the preparation phase of simulation, FastReduce.fastReduce

is used to infer output widths from input widths. Originally, FastReduce.fastReduce is

called with maxArraySize = 0 and clockTicks % maxArraySize is used to index StepArray,

so infinity is used to index StepArray resulting in undefined. This bug is fixed by calling

FastReduce.fastReduce with maxArraySize = 1.

Incorrect Number of Ports for RAM1

FastCreate.getPortNumbers defines a search table to find the number of input and output

ports for a given SimulationComponent by pattern matching its ComponentType. The origi-

nal version would return 2 for RAM1, but should be 3 as RAM1 has inputs for memory address,

data in and write enable.

Circular Buffer Indexing

In the original simulator, there is an issue with how stepSimulation updates the outputs

of global inputs. It currently calls propagateInputsFromLastStep to update outputs with

fs.ClockTick + 1 as the index, but in fact it should be (fs.ClockTick + 1) % maxArraySize

since the outputs (represented by StepArrays) are circular buffer.

4.2 Stage 2: Logic Simulation Only Simulator

In this stage, a duplicate of the existing FastReduce.fastReduce is created and it is stream-

lined to only support logic simulation. This is a necessary step to improve the performance

of logic simulation because it helps remove the overhead of FData as described in subsec-

tion 3.1.1 and section 2.2. By just using FastData for simulation data, the new simulator

needs one less match statement to read simulation data, creates one less object when update

simulation data. The refactored simulator will be referred as Version 1 (v1) simulator in this

report.

21

4.2.1 New Representation for Simulation Data

The need for a type to hold simulation data raises from the fact that after the InputLinks

and Outputs of each component now need to be able to hold both array of FData and

array of FastData. Although StepArray<'T> is a generic type, it can not be used as

StepArray<FData> and StepArray<FastData> at the same time.

An easy solution would be to use a DU type as shown in Listing 4. However, this approach

introduces new overheads as it uses one more discriminated union to wrap the simulation

data.

1 type NewStepArray =

2 | FDataArray of StepArray<FData>

3 | FastDataArray of StepArray<FastData>

Listing 4

Alternatively, StepArray can be changed from a generic record to a normal record, and

have multiple fields each holds a different type of array. By this way, no extra overhead

is introduced. Because StepArray is used in many other places in the simulator, the new

extended version of StepArray is named IOArray to avoid breaking existing code. IOArray

is a record type with two fields FDataArray and FastDataArray as shown in Listing 5.

Figure 4.1a and Figure 4.1c illustrates how IOArray helps flatten the simulation data

structure for logic simulation. When used in logic simulation, the FDataStep field is initialised

to an empty array to reduce memory footprint.

Based on the memory snapshot of the v1 simulator as shown in Figure 1, IOArray that

stores 550 data of width less than 33 bit takes 41984 bytes. This is a significant improvement

over StepArray in v0, which occupies 68296 bytes as shown in Figure 2. In terms of memory

efficiency for storing simulation data, v1 is able to store approximately 63% more data than

v0 within the same size of heap memory.

Another benefit of using IOArray is that it allows easy extension to support more types

of array, just by introducing more fields. For example, it will be extend to support numeric

arrays in section 4.3.

4.3 Stage 3: Numeric Array

Section 4.2 removes the unnecessary FData wrapper from logic simulation data. However,

the simulation data is still stored as arrays of objects in JavaScript Array objects. This

22

Index:

Step:

100

...
StepArray

FData:{
FastData:{
Dat:FastBits:{data1}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data2}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data3}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data4}
Width:16

}
}

(a) Data structure of StepArray<FData>.

Index:

FDataStep:

FastDataStep:

100

null

...IOArray

FData:{
FastData:{
Dat:FastBits:{data1}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data2}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data3}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data4}
Width:16

}
}

(b) Data structure of IOArray when used in truth table generation

Index:

FDataStep:

FastDataStep:

100

null

...

IOArray

FastData:{
Dat:FastBits:{data1}
Width:16

}

FastData:{
Dat:FastBits:{data2}
Width:16

}

FastData:{
Dat:FastBits:{data3}
Width:16

}

FastData:{
Dat:FastBits:{data4}
Width:16

}

(c) Data structure of IOArray when used in logic simulation.

Figure 4.1: Difference between StepArray<FData> and IOArray

23

1 type IOArray = {

2 FDataStep: FData array;

3 FastDataStep: FastData array;

4 Index: int

5 }

Listing 5: Type declaration of IOArray.

section describes how the simulation data structure can be further optimised, removing all

unnecessary wrapper and use numeric arrays to improve performance.

As briefly mentioned in section 2.1.3, JavaScript has two types of arrays, Array and Typed

arrays. Typed arrays are more efficient for storing numeric values due to their storage as

a contiguous block of memory called ArrayBuffer, allowing direct index-based access. On

the other hand, Array is stored as a list of pointers to objects, requiring additional steps to

access an element by following the pointer to the corresponding object.

The refactored simulator will be referred as Version 2 (v2) simulator in this report.

4.3.1 Static width inference

In order to store simulation data in numeric arrays, the width of each port must be known

before IOArrays are created so that only the corresponding arrays are initialised to the

required length. This requires static width inference as mentioned in subsection 3.1.2.

ISSIE is already equipped with a static width inferrer, inferConnectionsWidth, it is

currently used by checkConnectionsWidths to verify the consistency of connection widths

in the simulated design. As part of the modification, checkConnectionsWidths is updated to

include the output of inferConnectionsWidth, specifically ConnectionsWidth, in its output.

ConnectionsWidth is a map that associates connection IDs with their corresponding widths

4.3.2 Updated IOArray

To further optimise the storage of simulation data, the IOArray type is modified to store data

in raw binary format using typed arrays. The updated IOArray type, as shown in Listing 6,

replaces the FDataStep field with two typed arrays: UInt32Step, BigIntStep. These arrays

are used to store simulation data with widths less than or equal to 32 and greater than 32,

respectively. Figure 4.3 illustrates how data is stored in the new IOArray type.

Based on the memory snapshot of the v1 simulator as shown in Figure 3, IOArray that

stores 550 data of width less than 33 bit takes 2520 bytes. This is a significant improvement

over StepArray in v0, which occupies 41984 bytes as shown in Figure 2. In terms of memory

24

efficiency for storing simulation data, 21 is able to store approximately 15.7 times more

data than v1 within the same size of heap memory. Compare to v0, v2 is able to store

approximately 26.1 times more data within the same size of heap memory.

1 type IOArray = {

2 FDataStep: FData array;

3 UInt32Step: uint32 array;

4 BigIntStep: bigint array;

5 Index: int

6 }

Listing 6: Type declaration of updated IOArray with typed arrays.

Index:

FDataStep:

UInt32Step:

BigIntStep:

100

FData FData FData FData ...

uint32 uint32 uint32 uint32 ...

bigint bigint bigint bigint ...

IOArray

Figure 4.2: IOArray with typed arrays to store data in logic simulation.

25

Index:

FDataStep:

UInt32Step:

BigIntStep:

100

null

null

...

IOArray

FData:{
FastData:{
Dat:FastBits:{data1}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data2}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data3}
Width:16

}
}

FData:{
FastData:{
Dat:FastBits:{data4}
Width:16

}
}

(a) Data structure of IOArray when used in truth table generation.

Index:

FDataStep:

UInt32Step:

BigIntStep:

100

null

null

UInt32 UInt32 UInt32 UInt32 ...
IOArray

(b) Data structure of IOArray when used for data of width ≤ 32 in logic simulation.

Index:

FDataStep:

UInt32Step:

BigIntStep:

100

null

null

...

IOArray

bigint:{ data1 } bigint:{ data2 } bigint:{ data3 } bigint:{ data4 }

(c) Data structure of IOArray when used for data of width > 32 in logic simulation.

Figure 4.3: Difference between StepArray<FData> and IOArray

4.4 Stage 4: Extensions

4.4.1 Memory Compression

This extension focuses on further optimising heap memory usage in simulation, with com-

promise on simulation speed. The main idea is to store as many data as possible into each

32-bit word instead of storing one only data in every 32-bit word.

In section 4.3, IOArray is updated to store simulation data of any width into one of its

26

three typed-array fields: UInt32Step, BigIntStep, FDataStep. UInt32Step is an array of 32-

bit unsigned integers, like the other two buffers, each element of UInt32Step stores data of

one port from one clock tick. This however means memory space is wasted for data with

width less than 32 bits. For example, if a component has an output port with width 1 bit,

then only 1 bit of each 32-bit unsigned integer in its UInt32Step is used, the other 31 bits

are wasted. This is a huge waste of memory space, especially when the design has many

components with IO ports of small width.

To address this issue, auxiliary methods of UInt32Step are modified to be capable of effi-

ciently packing multiple small-width data into each 32-bit unsigned integer. This is achieved

by using bit manipulation operations to store and retrieve data from UInt32Step.

For example, if a component has an output port with width 1 bit, then its data is stored

from the least significant bit of each 32-bit unsigned integer in its UInt32Step. Each 32-bit

unsigned integer can store data of that port for 32 clock ticks. In the most extreme case, i.e.,

when all ports are 1-bit, memory usage for simulation data can be reduced by 32 times.

This save in heap size however comes with a cost of performance as extra bit manipulations

must be done to store and retrieve data from UInt32Step. This cost is measured in chapter 6.

The refactored simulator will be referred as Version 3 (v3) simulator in this report.

4.4.2 Compression methods

Two different ways to read and write data from UInt32Step have been considered.

1. Dense Compression.

Data is stored in UInt32Step with all bits utilised. Data can span multiple 32-bit word,

but complex bit manipulation is required. In the worse case, two read operations are

required to read one data from UInt32Step, two write operations are required to write

one data to UInt32Step.

For example, if a port has width 12 bits, then its data for the first 2 clock ticks are

stored in the first 32-bit word in UInt32Step. However, the data for the fifth clock tick

will be stored in split between the first and second word, its first 8 bits are stored in

the first word and the remaining 4 bits are stored in the second word.

03411121516232431

data3[7:0] data2 data11st Word

data4 data3[11:8]2nd Word

Figure 4.4: Layout of 12-bit data using dense compression.

2. Sparse Compression.

27

his compression method sacrifices bits at the end of each word in trade for less IO op-

erations and simpler bit manipulation. Data is stored in UInt32Step without spanning

multiple 32-bit word. In the worse case, one read operation is required to read one data

from UInt32Step, one write operation is required to write one data to UInt32Step.

For example, if a port has width 12 bits, then its data for the first 2 clock ticks are

stored in the first 32-bit word in UInt32Step. The data for the fifth clock tick will be

stored in the second 32-bit word in UInt32Step, 8 bits in the end of the first word are

unused.
01112232431

data2 data11st Word

data4 data32nd Word

Figure 4.5: Layout of 12-bit data using sparse compression.

3. Numeric Array of Other Types.

Instead of using UInt32Step (Uint32Array) to store all data with width less than 33,

UInt16Buffer and UInt8Buffer can be added to store data with width less than 16 and

8 respectively using Uint16Array and Uint8Array. This method requires neither bit

manipulation nor more IO operations, but it requires extra operations to decide which

one of the buffers to use when read or write data.

For example, if a port has width 7 bits, then the memory usage of its data stored in

Uint16Array would be half of that stored in Uint32Array, its data stored in Uint8Array

would be one fourth of that stored in Uint32Array.

07815162324313239404748545563

data2 data1UInt32

data4 data3 data2 data1UInt16

data8 data7 data6 data5 data4 data3 data2 data1UInt8

Figure 4.6: Layout of 7-bit data in Uint32Array, Uint16Array and Uint8Array.

4.4.3 New Read and Write Operations for UInt32Step

This section will describe the implementation of UInt32Step using sparse compression and

discuss design choices been made to achieve the best performance.

The length of each UInt32Step (numWords) is calculated as follows using known data

width w and maximum clock ticks of data kept in buffer maxArraySize.

28

samplesPerWord = ⌊32
w
⌋ (4.1)

numWords = ⌈ maxArraySize

samplesPerWord
⌉ (4.2)

Read Data from UInt32Step

UInt32Step

0wordIdxmaxArraySize

UInt32Word

0lsbmsb

width

32

Figure 4.7: Illustration of how to extract an arbitrary data in a UInt32Step

To extract arbitrary data from UInt32Step, we first need to find out two indexes,

1. arrayIdx, index of the word that contains the desired data in the circular buffer.

arrayIdx = clockTick mod maxArraySize (4.3)

2. bitOffset, bit offset of the data within the word, i.e. the least significant bit.

wordIdx = ⌊ arrayIdx

samplesPerWord
⌋ (4.4)

bitOffset = (arrayIdx mod samplesPerWord)× w (4.5)

With arrayIdx and bitOffset, we can extract the desired data from UInt32Step as

follows.

word = UInt32Step[wordIdx] (4.6)

data = word[lsb:lsb + w] (4.7)

JavaScript does not have native support to do bit slicing as in Equation 4.7, so we have

to use shifts and integer divisions to extract data from word. Listing 7 and Listing 8 shows

three different implementations of bit slicing in F# and their Fable transpiled JS code. The

performance of these three implementations are measured by running them 1000000 times

29

on a random UInt32 word. As the transpiled code suggested, bitSlice1 is the fastest as it

takes less operations which can also be processed taking advantage of parallelism, followed

by bitSlice3 and bitSlice2. This is probably because bitSlice1 and bitSlice3 both

contain two parts that can be computed independently whose results are then merged to get

the final result, while the computation in bitSlice2 is sequential. bitSlice1 is faster than

bitSlice3 because it has fewer operations overall.

1 // shift right and mask

2 let bitSlice1 bits lsb width =

3 (bits >>> lsb) &&& (0xFFFFFFFFu >>> (32 - width))

4

5 // shift left and right

6 let bitSlice2 bits lsb width =

7 (word <<< (32 - lsb - width)) >>> (32 - lsb)

8

9 // integer division

10 let bitSlice3 bits lsb width =

11 (uint32 (bits / (1u <<< lsb))) % (1u <<< width)

Listing 7: Three different implementations of bit slicing in F#.

1 // shift right and mask

2 function bitSlice1(bits, lsb, width) {

3 return ((bits >>> lsb) & (4294967295 >>> (32 - width))) >>> 0;

4 }

5

6 // shift left and right

7 function bitSlice2(bits, lsb, width) {

8 return ((word << ((32 - lsb) - width)) >>> 0) >>> (32 - lsb);

9 }

10

11 // integer division

12 function bitSlice3(bits, lsb, width) {

13 return (~~(bits / ((1 << lsb) >>> 0)) >>> 0) % ((1 << width) >>> 0);

14 }

Listing 8: JavaScript code transpiled by Fable from Listing 7.

30

Write Data to UInt32Step

The same algorithm as in section 4.4.3 can be used to find out where in the circular buffer

to put data. Once word is found, we need to carefully merge data into word without change

other bits in the word. This can be done in two ways,

1. Extract the bits in word before and after where data will be written to and then

construct the new word from these old bits and data.

newWord = {word[31 : bitOffset+ w], data, word[bitOffset : 0]} (4.8)

2. Clear the bits in word that will be written to, shift data to the correct position and

then merge data into word by bitwise and.

mask = ¬ ((0xFFFFFFFFu ≪ (32− w)) ≫ (32− bitOffset− w)) (4.9)

newWord = (word ∧ mask) ∨ (data ≪ bitOffset) (4.10)

4.4.4 WebAssembly

This extension focuses on leveraging WebAssembly (WASM) to enhance the ISSIE simulator’s

simulation speed and enable access to more heap memory.

As mentioned in subsection 2.1.5, latest version of Electron limits heap memory to 4GB

and blocks use of off-heap memory for typed array. By utilising WASM with 64-bit memory

indexes [26], ISSIE can address these memory limitations. It facilitates the simulation of

more extensive and complex designs.

However, it is important to note that support for compiling F# to WebAssembly is still in

the experimental phase. Both the official Blazor project and the third-party dotnet-wasi-sdk

project do not currently offer mature support for F#-to-WASM compilation. The following

sections delve into the details of the exploration process.

Compile to WASM using Dotnet-Wasi-Sdk [25]

This is a third party package that aims to compile dotnet code to WASM that is compliant

with WebAssembly System Interface(WASI), this means the generated wasm binary can be

executed not only in browser but in any WASI compliant runtime, e.g. Docker. Unfortu-

nately, this package is still in early development stage and has a known issue [24] that it

cannot call Grow or GC function to increase and manage unused memory. This issue causes

runtime error when ISSIE simulator parses designs from JSON as shown in Listing 9.

31

[wasm_trace_logger] * Assertion at

/home/yujie/workspace/dotnet-wasi-sdk/modules/runtime/src/mono/mono/metadata/sgen-stw.c:77,

condition `info->client_info.stack_start >= info->client_info.info.stack_start_limit

&& info->client_info.stack_start < info->client_info.info.stack_end' not met

↪→

↪→

↪→

Listing 9: Error message printed when parsing design from JSON using ISSIE simulator
compiled with dotnet-wasi-sdk.

Compile to WASM using Blazor [3]

Blazor offers two ways to run dotnet code in WASM: Ahead-of-time (AOT) compilation and

interpretation. AOT compilation trims unused code from source code and optimises the rest

of code using LLVM compiler before generate WASM binary. In interpretation mode, the

dotnet runtime is compiled to WASM, the source code is still compiled to Dlls and executed

in the WASMed dotnet runtime. Running AOT compiled WASM should be significantly

faster than interpretation.

Both of these two options only support C# to WASM compilation. As a result, source

code of ISSIE simulator must be wrapped in a C# project to be compiled to WASM by Blazor.

This makes it difficult to read file system from WASM code, for example, ISSIE simulator

need to read and validate Memory content before simulation starts. To work around this, all

files needed for simulation are read in JavaScript driver code and passed to WASM as byte

arrays as arguments of entry function.

AOT compilation is not feasible for ISSIE because Fable had problem compiling toWASM.

Fable is not used directly by ISSIE but is a dependency of Thoth.Json which ISSIE uses to

parse JSON files.

32

Chapter 5

Testing

Two tests are used to check the functional correctness of the new simulator automatically

and manually. All versions of simulator developed in this project (including WASM simulator

and version 3 simulator) pass manual test, only version 1 and version 2 simulators have been

tested under automated test as it requires extra effort to setup the automated test for the

specific data structure in each version.

Table 5.1: Test related files in simulation_test/js.

File Usage
index.js Defines main function that loads all design sheets a given path and

calls startCircuitSimulation from transpiled JavaScript file to
start simulation with specified parameters.

utils.js Defines several helper functions that uses Node APIs to interact
with local file system. These functions are designed to replace Elec-
tron APIs ISSIE simulator uses.

runTest.sh Bash script that invokes index.js with Node to run simulation for
a specific design sheet in a given ISSIE project. It can be config-
ured to validate simulation result against a reference, or set Node
and V8 options to collect various debugging information during the
simulation process.

runTests.sh A wrapper to runTest.sh that run simulation for all design in a
given design and check whether all of them pass test.

runTest.ps1 PowerShell equivalent to runTest.sh

generateRef.sh Bash script that invokes index.js with Node to run simulation
for a specific design sheet in a given ISSIE project, and save all
simulation data to a reference file in JSON format.

33

5.1 Automated Correctness Test

This tests is done in Node.js by comparing the simulation results of the new simulator with

the results produced by the golden reference, the Baseline simulator. All test related files are

located in the simulation_test/js directory. Table 5.1 lists all files in this directory and

their usages.

To run the correctness test, reference outputs must be generated first by running generateRef.sh

on yw2919-simulator/baseline branch for the desired designs. Following that, run runTests.sh

on testing branch to check whether the new simulator produces identical results to the ref-

erence outputs.

This automatic test replies on helper functions defined in utils.js to extract simula-

tion data according the the data structure used by the tested simulator. For example, the

simulation data in version 1 simulator needs to be unwrapped from FastData and FastBits

whereas the simulation data in version 2 simulator is already unwrapped and can be extracted

by indexing directly.

5.2 Manual Correctness Test

Manual test is a complementary to the automated test to obtain quick feedback in develop-

ment. It is done by simulating the EEP1 CPU design with a program to compute fibonacci

sequence and checking whether the result for the 10th term equals 55.

34

Chapter 6

Results

This chapter presents the results of the performance benchmark of the new simulators. Ta-

ble 6.1 lists the actions that have been taken to make sure the benchmark results are repre-

sentative.

Table 6.1: Criteria considered to make benchmark results representative.

Criteria Actions Taken to Fulfil the Criteria
Sample Selection The benchmark result is collected by running the benchmark on

two machines with x86 and ARM CPU, respectively.
Sample Size The benchmark is repeated 10 times for each test case to reduce

the effect of random noise, e.g. randomness in JIT compilation.
Realistic Workloads This benchmark uses EEE1labs as the test suite [10], it includes a

complete implementation of EEP1 CPU and 23 design sheets that
covers various common digital logic circuits such as arithmetic logic
unit, register file, decoder, etc.

Fair Comparison Warm up runs are performed before the actual benchmark for
JavaScript based benchmark to make sure potential optimisation
has been applied by the JIT compiler. For speed benchmark, ge-
ometric mean is used to compute the benchmark score from sim-
ulation speed of each design sheet. This is because the simulation
speed of each design sheet varies a lot, using arithmetic mean would
skew the result towards the design sheets that are faster to simu-
late. Design sheets that contained fewer clocked components are
faster to simulate because clocked components need extra reads to
history data. For memory benchmark, garbage collection is forced
before each measurement to eliminate the effect of garbage collec-
tion on memory usage.

35

6.1 Simulation Speed Benchmark

This benchmark is design to compare simulation speed of the new simulators with the Baseline

simulator, measured in tick× component/second. All designs in EEE1labs are used as the

test suite. This benchmark run each design for 2000 clock ticks and repeat 10 times, the final

score is the geometric mean of the simulation speed of each design sheet.

The Electron benchmark is designed to be triggered by clicking the “Benchmark” button

in the “View” menu of ISSIE app as shown in Figure 6.1, or by pressing “Ctrl + Shift + B”.

Benchmarks for other platforms need to be run in the terminal under their respective direc-

tories in simulator_tests, for example, simulator_tests/dotnet for dotnet benchmark.

Figure 6.2 shows the speed up from version 1 to version 3 relative to Baseline in different

platforms. From Figure 6.2a and Figure 6.2b, the same trend is observed on both MacOS

ARM andWindows x86 Electron, version 1 alone achieves more than×9 speed up to Baseline.

Version 2 further increases the speed up to 15 on both testing machine. Version 3 has a drop

in speed, as expected in subsection 4.4.1, from ×15 to ×8 as it takes more instructions to

extract packed data from UInt32Step.

Figure 6.1: Screenshots of Electron simulation speed benchmark

36

Baseline Version 1 Version 2 Version 3

0

5

10

15

1.00

9.77

16.47

9.80

S
p
ee
d
u
p

(a) Simulation speed improvement on MacOS
ARM Electron, simulation speed of Baseline
is 3127 tick × component / second.

Baseline Version 1 Version 2 Version 3

0

5

10

15

1.00

9.05

14.90

8.17

S
p
ee
d
u
p

(b) Simulation speed improvement on Win-
dows x86 Electron, simulation speed of Base-
line is 2020 tick × component / second.

Baseline Version 1 Version 2 Version 3

0

2

4

6

1.00

1.93

5.46

3.80

S
p
ee
d
u
p

(c) Simulation speed improvement on MacOS
ARM Dotnet, simulation speed of Baseline is
25754 tick × component / second.

Baseline Version 1 Version 2 Version 3

0

1

2

1.00

1.73

2.05
1.90

S
p
ee
d
u
p

(d) Simulation speed improvement on Win-
dows x86 Dotnet, simulation speed of Baseline
is 19118 tick × component / second.

Baseline Version 1 Version 2 Version 3

0

0.5

1

1.5

2

1.00

1.44

1.90

0.69

S
p
ee
d
u
p

(e) Simulation speed improvement on MacOS
ARM WASM, simulation speed of Baseline is
3818 tick × component / second.

Baseline Version 1 Version 2 Version 3

0

0.5

1

1.5

2

1.00

1.44

2.01

0.67S
p
ee
d
u
p

(f) Simulation speed improvement on Win-
dows x86 WASM, simulation speed of Base-
line is 2371 tick × component / second.

Figure 6.2: Speed up of simulation speed on different versions of the simulator compared to
the Baseline.

37

6.2 Memory Usage Benchmark

Memory usage benchmark only focuses on the Electron version of the simulator as it is the

one that is delivered by users. Dotnet version is not able to run under the current framework

of ISSIE app, and WASM version is too immature to be used in production.

To compare the memory usage of the new simulators with the Baseline simulator, all

versions of simulators simulates the same design, “eep1” from EEE1labs repository which

consists of 538 components, for 20000 clock ticks with maxArraySize set to 10000. Memory

snapshots are taken at different stages of simulation to better understand how heap memory

is used. Statistics of these memory snapshots are collected from the Chrome DevTools

Memory panel as shown in Figure 6.3 as recorded in Table 6.3. maxArraySize = 10000

and clockTicks = 20000 is chosen because this corresponds to the largest size of memory

snapshot that my computer can handle without crashing DevTools.

The size of FastSimulation is recorded separately in Table 6.2 to better study the mem-

ory efficiency of Array and typed arrays.

It is worth noting that the memory usage of the Baseline and Version 1 simulators keeps

increasing as the simulation continues, even after clock ticks reaching the maximum length

of IOArray, 10000. This is because the simulator keeps allocating new memory to create new

objects, e.g. FastBits, when updating IOArrays, which holds JavaScript Array objects.

This is not the case for Version 2 and Version 3 simulators as they use typed arrays which

have fixed size.

On Start Loaded ProjectStarted Simulation 200 Ticks 2000 Ticks 20000 Ticks

0

100

200

Stages

H
ea

p
S
iz
e
(M

B
)

Figure 6.4: Heap size of FastSimulation (in MB) in different versions of ISSIE at different
stages of step simulation. Blue line is Baseline simulator, yellow line is Version 1, green line
is Version 2 and red line is Version 3.

From Figure 6.5, it is clear that the total heap usage is significantly affected by the heap

38

(a) Memory Statistics.

(b) Memory Summary with FastSimulation expanded.

Figure 6.3: Screenshots of Memory Panel in Chrome DevTools.

39

Stage
Version

Baseline Version 1 Version 2 Version 3

On Start 1812 1764 1764 1764
Loaded Project 1812 1764 1764 1764

Started Simulation 25541968 25133484 24430592 6355052
2000 Ticks 30943180 28081472 24439920 6364888

20000 Ticks 79653984 54773456 24526428 6451288
200000 Ticks 296027380 173299752 24938520 6863380

Table 6.2: Heap size of FastSimulation (in Bytes) in different versions of ISSIE simulator at
different stages of running step simulation for eep1 [10].

usage of FastSImulation, it accounts for 92% of the total heap usage for Baseline simulator

in benchmark conditions. Follows the blue line in Figure 6.5, the total heap usage is reduced

by 41% from Baseline to Version 1, 86% from Version 1 to Version 2, 72% from Version 2

to Version 3 and 98% from Baseline to Version 3. The greatest drop in heap usage is from

Version 1 to Version 2.

According to this result, Version 2 and Version 3 simulator can hold 11 and 42 times more

simulation data than the Baseline simulator within the same memory limit under the bench-

mark conditions. It is also worth noting that the improve in memory efficiency observed here

for Version 2 is lower than what is estimated in section 4.3, this is because FastSimulation

does not only consist of IOArrays, for example, state of clocked components is still stored as

StepArray in Version 2.

Baseline Version 1 Version 2 Version 3

0

1 · 105

2 · 105

3 · 105

Version

S
iz
e
(k
B
)

Figure 6.5: Heap usage of FastSimulation and total heap usage (in kB) in different versions
of ISSIE after simulating eep1 for 20000 clockTicks, plotted using data from Table 6.3 and
Table 6.2. Blue line is total heap usage and yellow line is heap usage of FastSimulation.

40

Stage
Category

Code Strings JS arrays Typed arrays System objects Total

On Start 4131 1397 99 697 321 9220
Loaded Project 6402 1921 479 1042 323 14352

Started Simulation 8607 1973 25073 1070 324 42601
200 Ticks 8301 1932 27696 967 325 47446

2000 Ticks 8554 1922 51161 962 325 96182
20000 Ticks 8821 1923 155551 969 326 312839

(a) Heap statistics of Baseline (in kB) at different stages of step simulation.

Stage
Category

Code Strings JS arrays Typed arrays System objects Total

On Start 4025 1395 98 697 321 9111
Loaded Project 5614 1895 480 1044 324 13496

Started Simulation 7720 1938 24811 1022 553 41358
200 Ticks 9422 1927 26007 967 532 46004

2000 Ticks 9468 1918 36649 975 529 72536
20000 Ticks 9696 1923 84120 1018 525 191572

(b) Heap statistics of Version 1 (in kB) at different stages of step simulation.

Stage
Category

Code Strings JS arrays Typed arrays System objects Total

On Start 4123 1400 99 695 321 9215
Loaded Project 6379 1912 473 984 323 14089

Started Simulation 8377 1955 2543 22881 324 40914
2000 Ticks 9241 1962 2571 22887 324 42219

20000 Ticks 9556 1961 2624 22892 324 42480
200000 Ticks 9815 1954 2829 22891 325 42935

(c) Heap statistics of Version 2 (in kB) at different stages of step simulation.

Stage
Category

Code Strings JS arrays Typed arrays System objects Total

On Start 3990 1400 98 697 321 9084
Loaded Project 6223 1926 476 1042 323 14184

Started Simulation 8328 1954 2536 4812 324 22788
2000 Ticks 9265 1961 2567 4818 324 23990

20000 Ticks 9388 1962 2620 4822 324 24230
200000 Ticks 9649 1958 2826 4830 325 24707

(d) Heap statistics of Version 3 (in kB) at different stages of step simulation.

Table 6.3: Heap statistics of different versions of ISSIE simulator at different stages of running
step simulation for eep1 [10].

41

1 [27878:0x138008000] 232 ms: Scavenge 2.0 (2.3) -> 1.3 (3.3) MB, 0.3 / 0.0 ms

(average mu = 1.000, current mu = 1.000) allocation failure;↪→

2 [27878:0x138008000] 259 ms: Scavenge 2.7 (3.8) -> 2.3 (4.3) MB, 0.5 / 0.0 ms

(average mu = 1.000, current mu = 1.000) allocation failure;↪→

3 [27878:0x138008000] 346 ms: Scavenge 4.4 (5.6) -> 4.0 (6.1) MB, 0.9 / 0.0 ms

(average mu = 1.000, current mu = 1.000) allocation failure;↪→

Listing 10

6.3 More Profilings

Benchmarks in section 6.1 only shows the overall speed up of the new simulator. In order

to exploit what exactly causes the speed up, two extra profiling runs were performed, one

measures the influence of the garbage collector on simulation speed, the other measures the

average number of Ignition bytecode [17] fastReduce takes to process a component for one

tick.

6.3.1 Time Spent on Garbage Collection (GC)

The total time spent on garbage collection is obtained by first running benchmark (runTest.sh)

with --gc-stat flag, which prints out brief summary of each garbage collection operation, as

shown in Listing 10. Then, these statistics are feed to a python script which uses regex to ex-

tract time consumption of each operation according to the format specified in gc-tracer.cc

[30] and sums them up. Each test runs simulation of EEP1 CPU for 106 clock ticks with

maxArraySize = 1e5.

Figure 6.6 shows the time spent on garbage collection compared to the total time con-

sumption to run the simulation. As expected, Baseline simulator spends the most time on

garbage collection, followed by Version 1. Time spent on GC is negligible for Version 2 and

Version 3. This can be further explained by the patterns shown in Figure 4, Figure 5, Figure 6

and Figure 7. This series of figures show that Baseline simulator and Version 1 simulator not

only spent the most time on GC, but also call GC the most times. GC is most frequently

called in Baseline simulator as it quickly runs out of memory and have to call GC to free up

memory.

Reducing the need for GC contributes to 31% of the speed up from Baseline to Version

1, and 30% of the speed up from Version 1 to Version 2.

42

Baseline Version 1 Version 2 Version 3

0

50,000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

3 · 105

3.5 · 105

Version

S
im

u
la
ti
o
n
ti
m
e
in

m
s

Figure 6.6: Total time spent on garbage collection and total time spent (measured with
--gc-stat flag) to simulate 1E6 clock ticks with maxArraySize = 1E5.

Baseline Version 1 Version 2 Version 3

0

50,000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

3 · 105

3.5 · 105 345241

76344

23718
33479

308920

62467.1

19728.2
29183.1

Version

S
im

u
la
ti
o
n
ti
m
e
(m

s)

With –gc-stat
Without –gc-stat

Figure 6.7: Total time spent to simulate 1E6 clock ticks with maxArraySize = 1E5, measured
with and without --gc-stat flag

43

6.3.2 Average Number of Ignition Bytecode

To measure the average number of Ignition bytecode generated to process any component in

fastReduce, the --print-bytecode is used together with --print-bytecode-filter=fastReduce

flag to print out bytecode generated by V8 for fastReduce only. The output is then feed

to a python script which use regex to count bytecode of different categories and use Jump*

bytecode to recognise branches in the control flow. These information is used to build a tree

with each node being a Jump* bytecode and each branch being one paragraph of branchless

bytecode. The average number of bytecode that fastReduce takes to process one component

is then calculated by average the number of bytecodes in path in this tree that connects its

roots to one of its terminal. The result is shown in Figure 6.8.

From Figure 6.8, it can be seen that average number of bytecodes across all categories

decreases from the Baseline version to Version 2, with the exception of arithmetic bytecodes.

This observation can be attributed to the fact that arithmetic bytecodes solely process the

extracted simulation data and remain unaffected by the change in the data structure that

encapsulates the simulation data.

Conversely, the flatter data structure used in new simulators leads to a decrease in the

average number of jump, load, and store bytecodes. This is because the new typed data

structure necessitates fewer of these operations for processing. For instance, the removal

of FData from Baseline to Version 1 implies less use of LdaNamedProperty to read field of

FData.

On average, there is a 38% reduction in the number of executed bytecodes for processing

one component from the Baseline version to Version 1. Additionally, from Version 1 to

Version 2, there is a further 27% reduction in the number of executed bytecodes. These

findings highlight the bytecode optimisation achieved through the improvements made in the

data structure and processing algorithms in the new simulators.

44

Baseline Version 1 Version 2 Version 3
0

50

100

150

200

250

300

350

400

450

500

550

600

249

234

9

35

148

137

10

26

117

103

8
21

132

123

11
20

64

46

20

33

590

368

269

319

Version

A
ve
ra
ge

n
u
m
b
er

of
b
y
te
co
d
es

Loads
Stores

Arithmetics
Jumps
Others

Figure 6.8: Average number of Ignition byte code that FastReduce.fastReduce takes to
simulate one component for one tick.

45

Chapter 7

Evaluation

This chapter evaluates the project based on the requirements set in chapter 3.

Despite the outstanding memory efficiency of Version 3 simulator, Version 2 is chosen as

the final delivered simulator as it is more balanced in terms of memory and speed performance.

The trade off of half speed for 5 time more simulation data is considered not worth for the

education purpose of ISSIE simulator. However, the Version 3 simulator is still valuable as a

proof of what would be possible if the simulator is to be used to simulate extreme large scale

system or extreme long time period. Concepts from version 3 can be brought to version 2 in

the future to improve its memory efficiency if needed.

Overall, the new simulator (Version 2) satisfies all the requirements set in chapter 3. It

is capable to simulate at 15 times the speed and store 11 times more simulation data in the

same heap size compared to the Baseline. It also cleaned up the code base to make it more

maintainable and fixed several hidden bugs that were present in the Baseline.

46

Chapter 8

Conclusion and Future Work

Optimising a digital circuit simulator to achieve over ×10 improvement is a challenging and

rewarding task. This project has successfully achieved all the preset requirements and also

exploit the source of these performance gain. During the process, tooling and techniques are

also developed as explored that can be helpful for future development of ISSIE simulator.

As explored in the extensions, there are still many ways to improve the ISSIE simulator.

The following are some of the ideas that could be further explored in the future:

Although dotnet ecosystem has note yet fully support WebAssembly, it is a very promising

platform for the future of ISSIE simulator. WASM with 64-bit memory indexes could allow

simulation at much larger scale. And it could also be used to develop browser base ISSIE

simulator.

Another unoptimised area is the boundaries between CustomComponents and their host-

ing component. In the current implementation, these boundaries are bridged by IO com-

ponents on both ends. But this could be improved by allowing direct access between the

actually logic of the two components.

47

Figure 1: Memory snapshot of v0 simulator with StepArray highlighted.

Figure 2: Memory snapshot of v1 simulator with IOArray highlighted.

48

Figure 3: Memory snapshot of v2 simulator with IOArray highlighted.

Figure 4: Duration of each GC operation (on top) and change of size of used Heap memory
(on bottom) during profiling task and in subsection 6.3.1 for Baseline simulator.

49

Figure 5: Duration of each GC operation (on top) and change of size of used Heap memory
(on bottom) during profiling task and in subsection 6.3.1 for Version 1 simulator.

Figure 6: Duration of each GC operation (on top) and change of size of used Heap memory
(on bottom) during profiling task and in subsection 6.3.1 for Version 2 simulator.

50

Figure 7: Duration of each GC operation (on top) and change of size of used Heap memory
(on bottom) during profiling task and in subsection 6.3.1 for Version 3 simulator.

51

Bibliography

[1] Adding BigInts to V8 · V8. url: https://v8.dev/blog/bigint (visited on 06/18/2023).

[2] BigInt - JavaScript — MDN. url: https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Reference/Global_Objects/BigInt (visited on 01/26/2023).

[3] Blazor — Build client web apps with C# — .NET. Microsoft. url: https://dotnet.

microsoft.com/en-us/apps/aspnet/web-apps/blazor (visited on 06/20/2023).

[4] Build cross-platform desktop apps with JavaScript, HTML, and CSS — Electron. url:

https://electronjs.org/ (visited on 06/19/2023).

[5] Build software better, together. GitHub. url: https://github.com (visited on 06/21/2023).

[6] cartermp.Discriminated Unions - F#. Sept. 15, 2021. url: https://learn.microsoft.

com/en-us/dotnet/fsharp/language-reference/discriminated-unions (visited

on 06/19/2023).

[7] Tom Clarke. Issie - an Interactive Schematic Simulator with Integrated Editor. original-

date: 2020-06-27T16:00:12Z. Jan. 31, 2023.

[8] ECMAScript. original-date: 2014-04-09T19:04:33Z. June 18, 2023.

[9] ECMAScript® 2024 Language Specification. url: https://tc39.es/ecma262/#sec-

numeric-types-number-divide (visited on 06/18/2023).

[10] Ed. EEE1labs. original-date: 2022-10-05T12:58:54Z. June 17, 2023.

[11] Elm - delightful language for reliable web applications. url: https://elm-lang.org/

(visited on 01/24/2023).

[12] Elmish · Elmish. url: https://elmish.github.io/elmish/ (visited on 01/24/2023).

[13] F# Software Foundation. url: https://fsharp.org/ (visited on 06/19/2023).

[14] Fable · JavaScript you can be proud of! url: https://fable.io/ (visited on 12/26/2022).

[15] Fantomas. url: https://fsprojects.github.io/fantomas/ (visited on 06/20/2023).

[16] Git. url: https://git-scm.com/ (visited on 06/21/2023).

52

https://v8.dev/blog/bigint
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://electronjs.org/
https://github.com
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://tc39.es/ecma262/#sec-numeric-types-number-divide
https://tc39.es/ecma262/#sec-numeric-types-number-divide
https://elm-lang.org/
https://elmish.github.io/elmish/
https://fsharp.org/
https://fable.io/
https://fsprojects.github.io/fantomas/
https://git-scm.com/

[17] Franziska Hinkelmann. Understanding V8’s Bytecode. DailyJS. Dec. 19, 2017. url:

https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775 (vis-

ited on 01/26/2023).

[18] JavaScript — MDN. May 1, 2023. url: https://developer.mozilla.org/en-

US/docs/Web/JavaScript (visited on 06/19/2023).

[19] JavaScript engine fundamentals: Shapes and Inline Caches · Benedikt Meurer. url:

https://benediktmeurer.de/2018/06/14/javascript-engine-fundamentals-

shapes-and-inline-caches/ (visited on 02/06/2023).

[20] Numbers and dates - JavaScript — MDN. June 1, 2023. url: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Guide/Numbers_and_dates (visited on

06/18/2023).

[21] Pointer Compression in V8 · V8. url: https://v8.dev/blog/pointer-compression
(visited on 06/18/2023).

[22] React – A JavaScript library for building user interfaces. url: https://reactjs.org/

(visited on 02/06/2023).

[23] refs/heads/10.8-lkgr - v8/v8 - Git at Google. url: https://chromium.googlesource.

com/v8/v8/+/refs/heads/10.8-lkgr (visited on 06/19/2023).

[24] Running out of memory quite quickly and seemingly not garbage collection · Issue #11 ·
SteveSandersonMS/dotnet-wasi-sdk. url: https://github.com/SteveSandersonMS/

dotnet-wasi-sdk/issues/11 (visited on 05/24/2023).

[25] Steve Sanderson. Experimental WASI SDK for .NET Core. original-date: 2022-03-

25T15:57:08Z. June 20, 2023.

[26] Timeline update? · Issue #36 · WebAssembly/memory64. url: https://github.com/

WebAssembly/memory64/issues/36 (visited on 06/18/2023).

[27] V8 JavaScript engine. url: https://v8.dev/ (visited on 01/26/2023).

[28] V8 Sandbox - Address Space. Google Docs. url: https://docs.google.com/document/

d/1PM4Zqmlt8ac5O8UNQfY7fOsem-6MhbsB-vjFI-9XK6w/edit?usp=sharing&usp=

embed_facebook (visited on 06/14/2023).

[29] V8 Sandbox - Sandboxed Pointers. Google Docs. url: https://docs.google.com/

document/d/1HSap8-J3HcrZvT7-5NsbYWcjfc0BVoops5TDHZNsnko/edit?usp=fatal-

error-notifier-usp&usp=embed_facebook (visited on 06/14/2023).

[30] v8/src/heap/gc-tracer.cc at main · v8/v8 · GitHub. url: https://github.com/v8/

v8/blob/main/src/heap/gc-tracer.cc (visited on 06/21/2023).

[31] WebAssembly. url: https://webassembly.org/ (visited on 06/19/2023).

53

https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://benediktmeurer.de/2018/06/14/javascript-engine-fundamentals-shapes-and-inline-caches/
https://benediktmeurer.de/2018/06/14/javascript-engine-fundamentals-shapes-and-inline-caches/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Numbers_and_dates
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Numbers_and_dates
https://v8.dev/blog/pointer-compression
https://reactjs.org/
https://chromium.googlesource.com/v8/v8/+/refs/heads/10.8-lkgr
https://chromium.googlesource.com/v8/v8/+/refs/heads/10.8-lkgr
https://github.com/SteveSandersonMS/dotnet-wasi-sdk/issues/11
https://github.com/SteveSandersonMS/dotnet-wasi-sdk/issues/11
https://github.com/WebAssembly/memory64/issues/36
https://github.com/WebAssembly/memory64/issues/36
https://v8.dev/
https://docs.google.com/document/d/1PM4Zqmlt8ac5O8UNQfY7fOsem-6MhbsB-vjFI-9XK6w/edit?usp=sharing&usp=embed_facebook
https://docs.google.com/document/d/1PM4Zqmlt8ac5O8UNQfY7fOsem-6MhbsB-vjFI-9XK6w/edit?usp=sharing&usp=embed_facebook
https://docs.google.com/document/d/1PM4Zqmlt8ac5O8UNQfY7fOsem-6MhbsB-vjFI-9XK6w/edit?usp=sharing&usp=embed_facebook
https://docs.google.com/document/d/1HSap8-J3HcrZvT7-5NsbYWcjfc0BVoops5TDHZNsnko/edit?usp=fatal-error-notifier-usp&usp=embed_facebook
https://docs.google.com/document/d/1HSap8-J3HcrZvT7-5NsbYWcjfc0BVoops5TDHZNsnko/edit?usp=fatal-error-notifier-usp&usp=embed_facebook
https://docs.google.com/document/d/1HSap8-J3HcrZvT7-5NsbYWcjfc0BVoops5TDHZNsnko/edit?usp=fatal-error-notifier-usp&usp=embed_facebook
https://github.com/v8/v8/blob/main/src/heap/gc-tracer.cc
https://github.com/v8/v8/blob/main/src/heap/gc-tracer.cc
https://webassembly.org/

[32] webpack. webpack. url: https://webpack.js.org/ (visited on 06/19/2023).

54

https://webpack.js.org/

	Introduction
	Project Motivation
	Report Structure

	Background
	Tech Stack
	Elmish
	FSharp(F#)
	JavaScript
	Fable
	Electron
	V8 Engine
	Git

	Data Structures
	Types Used in Schematic Editor
	Types Used in Simulation

	Algorithms

	Requirements Capture
	Problem of the Current Implementation
	Insufficient Performance
	Technical Debts

	Requirements for the New Simulator

	Implementation
	Stage 1: Clearing Technical Debts
	Removal of Deprecated Code
	Bug Fixes

	Stage 2: Logic Simulation Only Simulator
	New Representation for Simulation Data

	Stage 3: Numeric Array
	Static width inference
	Updated IOArray

	Stage 4: Extensions
	Memory Compression
	Compression methods
	New Read and Write Operations for UInt32Step
	WebAssembly

	Testing
	Automated Correctness Test
	Manual Correctness Test

	Results
	Simulation Speed Benchmark
	Memory Usage Benchmark
	More Profilings
	Time Spent on Garbage Collection (GC)
	Average Number of Ignition Bytecode

	Evaluation
	Conclusion and Future Work

