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Abstract

Issie (Interactive Schematic Simulator with Integrated Editor) is an education-focused digital elec-
tronics design platform used by students at Imperial College London, featuring an intuitive user-
friendly UI and capable logic simulator. One of the many challenges a student may face when
learning to design digital logic is conceptualising relationships between inputs and outputs in com-
binational logic, and how they relate to design specifications. This project extends the existing
Issie application, exploring novel ways to communicate these logic relationships to the user. This
is primarily achieved through the implementation of interactive automatic schematic-derived truth
tables, which can be manipulated, reduced, and filtered to describe combinational logic relation-
ships in numeric and algebraic forms. This involved the definition of an alternative formal language
to Boolean algebra for representing combinational logic.

Additionally, this project has also made changes to the top-level UI of the application to make the
user experience more consistent and conducive to learning. The extended functionality delivered by
the project is effective and performant; this has been confirmed through a user experience survey.
The novel visualisation methods have been tested on circuits designed by EE students at Imperial
College London. Large digital logic circuits, such as the Arithmetic Logic Unit of an 8-bit ARM
CPU, can be condensed from a schematic containing billions of possible input combinations to a
short algebraic truth table describing a few dozen cases.
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Chapter 1

Introduction

1.1 Project Motivation

Digital Electronics and circuit design are core fields in the study of Electronic Engineering and
are focused on the analysis and logical interpretation of digital signals, as well as the engineering
of hardware that manipulates them in accordance with a desired logical function. A strong un-
derstanding of the fundamentals of digital electronics and circuit design serve as a foundation for
multiple branches of study within Electronic Engineering. Therefore, it is vital that undergraduate
students at Imperial College and other institutions have the best tools available to aid their study
of these fundamental concepts. One of the many challenges a first-year undergraduate student may
face while learning Digital Electronic design is conceptualising relationships between inputs and
outputs, and how these relationships relate to design specifications. At Imperial College London,
EE students have the opportunity to gain a deeper insight into combinational logic through prac-
tical laboratory sessions, during which they create and simulate combinational circuits. The tools
which they use must fulfil two criteria; firstly they must provide an education-focused platform
through which students can learn more about combinational logic and hardware design; secondly
they must be capable design tools in their own right which allow students to design and simulate
complex logic.

Issie (Interactive Schematic Simulator with Integrated Editor) [1], an intuitive hardware design
application, was developed at Imperial College London to address the lack of third-party programs
that matched the above criteria. Issie is designed to be easy to use (requiring no user manual)
and informative; visual cues and clear error messages guide students towards correct designs while
individual step and waveform simulators allow students to vary inputs and see the effect on output
values. This allows them to gain a better understanding of the hardware logic they have created.
However, there is room for improvement. In its current form, users of the application implement
digital logic by building it component-by-component on a schematic diagram. Any syntactically
correct digital circuit can be simulated using the Step Simulator. In the Step Simulator, users
specify values for each input to the digital logic, and can read the corresponding output values.
Intermediate values can also be observed using Viewer components. This functionality enables
the user to easily verify their schematic with specific test cases, but lacks the ability to clearly
summarise and verify the overall relationship between the inputs and outputs of the logic circuit.
Users must therefore gain an overall understanding of the circuit through a combination of:

1. Visually analysing the schematic to understand its logical function.

2. Entering different input combinations into the Step Simulator and analysing the effect each
change has on the outputs.

As the implemented digital logic grows in complexity, the relationship between the inputs and
outputs often becomes more obscure, and the schematic itself grows in size and can start to feel
divorced from the specification. In such situations, the aforementioned method for understanding
the logic circuit becomes less effective. To stop the schematic from getting too large and crowded
Issie lets users define hierarchical Custom Components which modularise the schematic and cut
down on logic duplication. For example, an ALU may be implemented as a Custom Component
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within a CPU design schematic. This feature however, does not fully combat the issue of obscure
relationships between inputs and outputs for complex circuits. Firstly, custom components that
are not named clearly further obscure the logic function of the circuit. Secondly, due to their
hierarchical nature, custom components can be nested inside other custom components, meaning
that the user may have explore multiple layers of nested components before they can analyse the
top-level schematic. This is a time-consuming exercise, requiring significant effort by the user.
Therefore, there is significant value to adding functionality to Issie which allows users to better
understand the relationships between inputs and outputs in digital logic circuits in a shorter amount
of time.

One possible solution to this problem is automatically generating truth tables from the schematic.
Truth tables exhaustively show the relationship between all inputs and outputs in an organised,
persistent format. Inspecting cases in a truth table is far quicker than repeatedly changing values
in the Step Simulator. Furthermore, by investigating novel ways of presenting and interacting with
these truth tables their value addition to the learning and circuit design experience in Issie can be
boosted. For example, the ability to present relationships inferred from the schematic in the truth
table, or reduce an existing truth table with user-defined constraints, would provide the user with
far more information than a simple simulation.

There is also merit in investigating the reverse; generating schematics from user-entered truth
tables. This could reduce time spent designing hardware components which implement simple logic
but require many gates and connections, as well as serve as a stepping stone between schematic
design and HDL-based design.

Thus, there is a strong case for finding and implementing alternative ways to visualise (and possibly
input) combinational logic in Issie to enable users to gain a better understanding of relationships
in the logic, as well as the specification of the top-level design. If added in a way which compli-
ments Issie’s existing features, such enhancements are likely to increase Issie’s effectiveness as an
educational platform in addition to its capability as a digital logic design tool. This will benefit
students at Imperial College and other educational institutions.

1.2 Project Definition

The purpose of this project is to explore novel ways in which interactivity can be added to automatic
schematic-derived truth tables, and how interactively generated truth tables can be used as a fast
aid to design combinational logic. This is to achieve the overall aim of this project - to improve
Issie in such a way that it is easier for students to understand the use of combinational logic in
digital design. The deliverable will be integrated as an extension to the Issie application, with users
being able to generate truth tables from the schematic and interact with them in ways that will
augment their understanding of the logic they are designing and of Digital Electronics concepts
in general. This project will conduct a short evaluation of Issie, highlighting the areas where it
can be improved. While the primary focus of the project is on visualising combinational logic
with interactive truth tables, the project will also seek to improve the overall user experience of
Issie in other ways such as tweaking/redesigning elements of the UI or changing how information
is communicated to users such that it is consistent and clear. In addition to improving the user
experience for Issie, this project also aims to improve the developer experience wherever possible.
Since its inception, maintainability and extensibility have been key to Issie [2]; therefore the code
contributed to the Issie repository should be well-documented, readable, and interface well with
existing code so that it is easy for future Issie developers to maintain and extend it. Further to
this, if an appropriate opportunity arises, the project should also aim to reduce technical debt
within the existing codebase.

1.2.1 Core Principles of Issie

As this project aims to improve Issie, any work done on this project should align with Issie’s core
principles. All features implemented in Issie must be:

1. Robust: Software is robust when it is able to handle errors and behave correctly under
exceptional circumstances, such as when supplied with erroneous inputs [3]. For simulations
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and text field inputs, Issie notifies the user of the nature of the error. User input, no matter
how malformed, must never crash the application or lead to undefined behaviour.

2. Obvious: The visual output given to the user should make it obvious what is happening
without the need for unnecessary explanation. Issie prefers to show not tell in order to remain
beginner-friendly. For example, Issie uses colour-coded popups and highlights to draw user
attention where it is needed and communicate events clearly.

3. Intuitive: All functionality must be easy to expose to the user - there should be no need
for detailed user guides as the UI for all functionality must be designed in a way such that
users can intuitively learn how to use all of the application’s features.

In addition to these core principles, any extensions this project makes to Issie must also take into
account the targeted users and the intended primary use case - teaching undergraduate students
in a university laboratory while also enabling students to carry on where they left off at home.
Thus, all new features must be cross-platform compatible and be suitable for students working in
a laboratory and working alone at home.

In conclusion, this project has two final deliverables. The first is an improved version of Issie, while
the second deliverable consists of appropriate documentation of added features, and improvements
to the documentation of existing features.
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Chapter 2

Background

This chapter describes various theoretical concepts which provide context to many of the decisions
made throughout the duration of the project. It also describes and evaluates the current version of
Issie, analysing its strengths and weaknesses. Given the overall project goal of improving combi-
national logic visualisation in Issie, this analysis provides context for the extensions made to Issie
by the project, which are described in subsequent chapters.

2.1 Pedagogical Considerations

Given the overall project aim of making it easier for students to understand the use of logic in
digital design, any features added to Issie must enhance the learning experience of its users. Many
decisions related to the project, such as which features to add, the UI/UX design, and the level of
interactivity will all be made through the lens of pedagogy.

2.1.1 Memory Models

One of the key facets of learning is the long-term retention of key concepts and relationships. The
Atkinson-Shiffrin multi-store model [4] provides a good framework for modelling the workings of
human memory, and many task-specific models, theories, and techniques have been derived from
it. The aim of any effective learning application should be to convey and revisit information in
such a way that it succeeds in reaching the Long Term Memory store.

Iconic Memory

Echoic Memory

Sensory Register

Visuospatial Sketchpad

Phonological Loop

Short-Term Memory

Long-Term MemoryExternal Stimuli

Decay: 0.5 seconds Decay: 30 seconds

Figure 2.1: The Atkinson-Shiffrin Multi-Store Model

As shown in Figure 2.1, the Atkinson-Shiffrin Multi-Store Model states that humans perceive
information through external stimuli, and that information is encoded as three different types of
stimulus. Visual encoding encodes information in pictures and diagrams, Semantic encoding
encodes information in words and their meanings, while Acoustic encoding encodes information
in sounds. This encoded information is processed by the sensory register. If attention is paid
to this information, it travels into short-term memory, otherwise it decays within half a second
and is forgotten. For information to progress from short-term to long-term memory, a process
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of repetition called maintenance rehearsal is necessary [5], in which the information is repeated
within the learner’s mind. For visually encoded information, this could be through repeated
visualisation of diagrams or patterns in what the learner sees on a screen, while for acoustically
encoded information this is achieved through the learner playing back the soundbite in their head
(phonological loop). A key take-away from this memory model is that human brains process
different information encodings independently, meaning that even if one encoding type is saturated
with information, additional information can still be conveyed to the learner using an alternative
encoding method.

In its current form, Issie encodes information about the digital circuit both visually (circuit di-
agram, error highlighting etc.) and semantically (error messages, simulation outputs). No in-
formation is encoded acoustically, however outside of chimes for errors there is not much scope
for implementation of sounds. Furthermore, students will receive plenty of auditory information
in the form of teaching from lab assistants and conversation with their peers. Any extensions
added to Issie by this project should therefore focus on conveying information to users through a
combination of diagrams with appropriate annotations and informative text.

2.1.2 Educating Engineers

As a tool for teaching Digital Electronics, Issie’s primary user base is engineering students. There-
fore, there is value in exploring trends in how engineers learn best, and tailoring Issie’s design and
structure to align with these trends. In 1992, Fleming and Mills proposed that there were four cat-
egories of how students learned. These are visual, auditory, reading/writing, and kinesthetic
[6]. Most learners will learn using all of these methods, however will exhibit a preference towards
one or two. Studies have shown that engineers have a preference towards visual and kinesthetic
learning techniques [7]. The visual aspect means that engineers prefer information be conveyed
to them through diagrams, patterns, and highlighted meaningful symbols. On the other hand,
the kinesthetic aspect means that engineers prefer to learn through demonstrations, simulations,
and their own experiences. The existence of practical lab sessions and Issie itself lends itself to a
focus on kinesthetic learning; students explore concepts they have been taught about in lectures
by building and simulating combinational logic. Therefore, the results of the VARK survey concur
with the current teaching style in the EEE Departement at Imperial College. Currently, Issie has
an interactive diagram with highlighting (visual encoding), as well as simulators for testing logic
and general experimentation (kinesthetic learning). Thus, it can be said that Issie in its current
form is fit for its purpose: educating engineers. In turn, any extensions added to Issie by this
project should continue this trend of visual and kinesthetic learning, but while also taking care to
not overload the users’ sensory register and short-term memory.

2.1.3 Cognitive Theories of Self Efficacy and Constructivism

There are more factors that contribute towards an effective learning experience than just the
conveyance of information. The learning process must be structured in such a way that students
remain motivated while learning complex concepts. A ten-year longitudinal study [8] found that
there is a significant correlation between students who are motivated, therefore having high self-
confidence, and academic attainment. Therefore, while developing educational tools like Issie, an
emphasis must be placed on communicating information to students in such a way that they retain
the belief that they can successfully learn the content. This approach aligns well with the theory of
constructivism in education, which seeks to educate students by having them discover knowledge
intuitively in contrast to traditional methods in which a student is considered an ’empty vessel’
waiting to be filled up by a teacher [9]. The rationale behind the theory is that this self-discovery of
knowledge will build a stronger conceptual understanding of what is being learnt. Constructivism
aligns well with teaching styles that suit kinesthetic learners, as both approaches focus on students
learning through their own experiences. Engineers tend to be kinesthetic learners, therefore, this
project should aim to improve Issie in such a way that students are able to interactively and
iteratively build their understanding of digital electronics and circuit design by themselves.
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2.2 Combinational Logic

Combinational logic is a type of digital logic in which the output of the logic is a pure function of
its present inputs [10]. This means that combinational logic is memoryless; it is not affected by
any previous outputs. This is in contrast to sequential logic, for which the output is dependent on
present input values and some internal state derived from previous outputs.

2.2.1 Visualising Logic with Boolean Algebra

The aforementioned pure function which maps inputs to outputs can be written as a Boolean ex-
pression. A Boolean expression, much like traditional mathematical expression, features a set of in-
put terms combined using operators. There exist three fundamental Boolean operators [11]:

NOT, a unary operator which outputs the inverse of the input.

AND, a binary operator which outputs HIGH when both inputs are HIGH and LOW oth-
erwise. Denoted by

OR, a binary operator which outputs HIGH when either of the inputs are HIGH, and LOW
otherwise

Other Boolean operators, such as NAND, NOR, and XOR also exist, but can be defined using
a combination of the three fundamental operators. Therefore, the first and most basic way of
visualising combinational logic is simply through writing the Boolean expression which represents
it. However, it can be difficult to quickly understand what some logic does using just Boolean
expressions. Take for example the following Boolean equation for output Y , derived from inputs
S, A, and B:

Y = S.A+ S.B (2.1)

While the operations performed are clear, it may not be very clear on first inspection to an
inexperienced student what the expression actually achieves. Furthermore, Boolean expressions
grow in complexity as schematics become larger, making them even tougher to understand at a
glance.

2.2.2 Visualising Logic with Schematic Diagrams

Schematic diagrams give the hardware representation of the combinational logic, and are the pri-
mary way of creating and visualising combinational logic in Issie. At their simplest, they consist
purely of logic gates; these gates each correspond to a Boolean operator. However, in practice
(and Issie) schematics are at a slightly higher-level, with certain combinational components (which
can be built from gates) pre-created for the user. For example, Equation 2.1 represents a 2-bit
Multiplexer, which is a component available in Issie’s catalogue. The recall of stored knowledge
due to the visual stimulus of the multiplexer component on the diagram is much more likely com-
pared to the semantic stimulus of the Boolean expression. However, as a schematic increases in
size, the number of components may become so large that holding all of the visual stimuli in
short-term memory is unfeasible. Issie combats this by letting users modularise their schematic
through hierarchical custom components. Alongside decreasing schematic size and repeated logic,
this feature actually aims to teach students the technique of modularising their work (whether that
is a schematic or code), and its advantages. These advantages [12] include efficient development,
easier dubugging, and logic reuse. However, as mentioned in the Project Motivation, hierarchi-
cal components are not always effective (particularly if badly named and organised), leaving a
opportunity for improvement through complementary visualisation techniques.

2.3 Truth Tables

A truth table represents a given combinational logic function; featuring all input combinations on
the left, and their corresponding output(s) on the right. As the truth table maps all possible inputs
to their output, it is trivial to look up the behaviour of the logic in a given scenario. A very basic
example is the truth table for the Boolean AND operator, shown in Table 2.1.
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A B C
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1: Truth Table for the Boolean AND operator (C = A.B)

Given that a truth table defines some logic using an exhaustive set of examples, it could be said that
truth tables are ideal for kinesthetic learners. This exhaustive property can also be used to test for
logical equivalence. Suppose the claim is made that two schematics, with one schematic featuring
far fewer components than the other, are logically identical. Equivalence could be confirmed by
simply checking if the truth tables for the two schematics are the same.

However, a disadvantage of using truth tables to visualise combinational logic is that they can very
rapidly grow in size. For logic with n single-bit inputs, the number of rows in the associated truth
table is 2n − 1. For multi-bit inputs this number would grow even larger. Thus, Issie schematics
with a large number of inputs would result in very long truth tables, which would likely intimidate
the user. The size of generated truth tables could be reduced by filtering them based on user
selections, or through truth table reduction methods.

2.3.1 Reduction using Don’t Cares

A "Don’t Care" term in a truth table can mean different things based on it’s positioning. It is
more commonly seen on the right-hand side of a truth table, signifying that an output for a given
input combination is invalid or has no use [13]. This information is often used when attempting
to simplify Boolean expressions using Karnaugh maps. On the other hand, a Don’t Care term
in an input row signifies that the particular input has no effect on the eventual output of the
logic for that combination. These Don’t Care inputs can be found through logic minimisation,
of which there are numerous techniques ranging from the aforementioned Karnaugh Maps [14]
to heuristic-based tools like Espresso [15]. The latter is very effective at reducing large circuits
efficiently, and would therefore appear to fit the needs of the project well. An example of the
reduction can be seen in Table 2.2, where the eight row exhaustive truth table (2.2a) is reduced to
two rows (2.2c). However, Espresso and other common minimisation techniques treat their inputs
and outputs as single-bit Boolean values which are either ON, OFF, or DC – corresponding to 1, 0 and
Don’t Care [16]. Multi-bit IOs are broken into their constituent bits. In Table 2.2c, only HIGH
outputs are shown – this works when it can be assumed that all other input combinations yield 0.
This approach aligns well with industrial applications, where signals on wires can only be HIGH
or LOW, and there is value in reducing to the form which requires the fewest gates. On the other
hand, Issie is an educational application where inputs and outputs can have more than two values,
and focus is more on semantics and understanding rather than the most cost-efficient hardware
design. Therefore, such minimisation would not integrate well with Issie’s existing implementation
of multi-bit IOs.

In order to implement DC reduction in Issie, a suitable algorithm will have to be written which
supports multi-bit inputs. One possibility may be analysis of redundancies in the existing truth
table. For example, in the full truth table, the first and third row both have an output value of
0, with the only difference being the change in the value of B. Given that B can only take two
values, this shows that when A = 0 and S = 0, the value of B does not affect the output - therefore
we "don’t care" about B. Rows one and three can therefore be collapsed into one row, with the
entry for the B column being replaced with an "X". This process can be repeated until all such
row combinations have been collapsed. The results from this process can be seen in Table 2.2b.
The length of the truth table has been reduced by 25%, and the actual semantic function of what
the multiplexer does is much clearer as well. This table is however, much larger than the reduced
table generated by Espresso, indicating that it may not work well with larger schematics.
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2.3.2 Algebraic Truth Tables

While reduction with Don’t Cares is useful, neither implementation of it is ideal. Industry-style
minimisation doesn’t fully align with Issie’s implementation, while custom algorithms may not be
reduce the table enough. Additionally, Don’t Care reduction cannot simplify relationships which
involve all inputs, such as arithmetic. A viable alternative is an Algebraic Truth Table; these
are often found on component datasheets [17] and have the task of summarising the behaviour of
the circuit in a concise and readable format. One such example is shown in Figure 2.2, which is
an excerpt from a datasheet for a three-input multiplexer. H and L are equivalent to 1 and 0,
but the terms of form Ix in the table are algebraic values representing inputs. The select signals
(S2, S1, S0), which actually control the circuit behaviour are still numeric.

Figure 2.2: Algebraic Truth Table in Datasheet for a Three-input Multiplexer [17]

Table 2.2d shows what the corresponding algebraic truth table would look like for the running
example in this section. A is propagated to the output when the selection input (S) is low,
and B is propagated when S is high. This clearly describes a two-input multiplexer. Having
functionality which could create similar tables for user-created schematics, with support for more
complex algebraic operators would likely be useful. This is because algebraic truth tables carry
far more semantic information in a much smaller visual space, meaning that a students’ sensory
register is less likely to be overloaded.

A B S OUT
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

(a) Full Truth Table

A B S OUT
0 X 0 0
X 0 1 0
X 1 1 1
1 X 0 1
0 0 X 0
1 1 X 1

(b) DC Reduced
(Inc. Zeros)

A B S OUT
1 X 0 1
X 1 1 1

(c) DC Reduced
(Espresso)

A B S OUT
A B 0 A
A B 1 B

(d) Algebraic Truth Table

Table 2.2: Truth Tables for a 2-bit Multiplexer
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2.4 An Overview of Issie’s Technology Stack

The reasoning and process behind the decisions made for Issie’s technology stack can be found in
Marco Selvatici’s dissertation on DEFlow, the predecessor to Issie [2]. This section describes the
technology stack, and evaluates and reaffirms why Issie’s technology stack is well suited.

2.4.1 Programming Language

Issie is written in F# , an open-source, cross-platform, interoperable programming language for
writing succinct, robust and performant code [18]. It is functional-first; meaning that it contains
many features found in functional languages and encourages a functional programming style while
also allowing programmers the flexibility to use the programming styles of other paradigms. Pure
functional programming languages adopt a philosophy of declarative programming and immutable
data; data values cannot be updated after initial assignment, and functions take this data as input
and map it to output data. These functions are deterministic, meaning that their output is solely
dependent on the value of their inputs and that there is no internal state affecting the behaviour
of the function. This differs from the more common imperative style of programming where code
is treated as a sequential list of instructions which mutate program data/state. The deterministic
nature of functions in pure functional programming makes them very easy to understand, as
operations on data have no side-effects and are therefore very easy to track. Not only does this
make debugging easier, but it leads to fewer overall bugs in the code. A large-scale study of
programming languages and code quality on Github [19] found that "Functional languages have a
smaller relationship to defects than other language classes, whereas procedural languages are either
greater than average or similar to the average." The study also found that the "Functional-Static-
Strong-Managed" class of languages (i.e. languages that are functional, statically and strongly
typed with in-built memory management) are less likely than average to result in defect-fixing
commits on Github. While not a part of the study, F# does belong to this class of languages,
and is therefore a wise choice of programming language for Issie. F# features a Hindley-Milner
type system, which has a provably sound type inference algorithm [20]. Type inference allows
for F# to be statically typed while eliminating the need for type annotations in the code. This
results in clean-looking and succinct code while still maintaining the benefits of static typing.
Furthermore, as types can be inferred on the fly by IDEs such as Visual Studio, it is much easier
for the programmer to track the correctness of the program.

Figure 2.3: An example of incomplete Pattern
Matching in F# , with a warning from the com-
piler

One such example is found when pattern
matching, as seen in Figure 2.3. The function
printColor takes as input some colour of the
rainbow (type RainbowColor) and prints the
colour. RainbowColor is an F# Discriminated
Union (DU) type [21], where the data stored in
the value is not fixed; it can be one of several
distinct options. DU types have many applica-
tions, ranging from representing valid and error
cases to small object hierarchies. The type sys-
tem allows for the IDE to first infer the type
of the variable color, and then realise that the
pattern match does not cover the DU case for
when color is Green. Mousing over the warn-
ing line in Visual Studio gives the following
message: "Incomplete pattern matches on this
expression. For example, the value ’Green’ may
indicate a case not covered by the pattern(s)."

Such hints are immensely useful for the programmer. The advantage of such checks being per-
formed before and at compile-time is that it decreases the number of errors at run-time, which
tend to be more disruptive.

F# also helps protect against runtime errors through the use of Monadic types. Sometimes, certain
actions in a program may need to return nothing, such as an unsuccessful lookup in a Map/Dic-
tionary or if there is an absence of some data. Usually such messages are communicated within the
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program using either exceptions or NULLs which have to be caught and handled. If not tracked
and handled appropriately, NULLs in particular can lead to some very nasty and hard-to-debug
runtime errors. F# allows programmers to minimise the use of exceptions and avoid the use of
NULLs using the Option and Result types. The Option type can take the value Some <type a>
or None, giving the programmer a safe way to indicate nothing without using NULLs. The Result
type can reflect success (Ok <type a>) or failure (Error <type b>), giving the programmer a safe
way to propogate errors through their code without raising exceptions or returning NULL.

While F# has the many features and benefits of pure-functional languages and strongly encourages
the programmer to use them, it is an impure functional language and does allow the programmer
to use other styles of programming. For example, mutable state in functions is allowed by the use
of the mutable keyword upon definition. This allows flexibility; programmers can use the default
functional style in most places, and can selectively choose where to introduce functionally impure
constructs such as mutable state. An example of this in Issie is the FastSimulation used by the
Step Simulator, which uses mutable arrays to represent the value of component inputs/outputs at
different clock cycles.

As most of the features mentioned in this section are either unique to or far better implemented in
F# compared to other common app development languages such as JavaScript or Python, and that
F# belongs to the most bug-free class of languages, it can be said that Issie’s choice of programming
language is apt and ideal.

2.4.2 Ecosystem

While originally built as a language for the .NET framework, built to run on the Microsoft Common
Lanugage Runtime (CLR) [22], F# can also execute in Javascript environments through the use of
third-party trans-compilation tools [23]. Therefore, F# can be used to build desktop applications
using .NET, as well as Javascript web apps. Issie is built using the latter method; F# code
is compiled to JavaScript, which is executed in a desktop environment through Electron. This
section describes the chosen tools in this process, and the reasoning behind those choices.

Electron

Electron [24] is a framework for building desktop applications using JavaScript, HTML, and CSS.
Electron comes bundled with the open-source Chromium browser and Node.js, a runtime environ-
ment that lets JavaScript code execute outside of a browser. Using these, Electron enables web
apps to run locally on the user’s machine outside of a web browser, akin to a native program. The
advantage of this approach is that a developer can create a cross-platform application without any
experience of programming native applications for any platform. On the other hand, pure native
desktop applications often require differing codebases if multiple platforms are to be targeted [25];
this is a far more labour-intensive approach which also requires a wider skill set. Common native
desktop application technologies, such as UWP and WPF, have a much steeper learning curve
compared to Electron as well [26]. Given that Issie is maintained by various students over time, an
ecosystem that allows for easy cross-platform development with a relatively shallow learning curve
is preferable, making Electron well suited for Issie’s ecosystem.

However, potential issues with Electron must also be discussed. As Electron apps bundle Chromium
and Node, they are often quite large. Additionally, due to the use of the RAM-intensive Chromium
browser, Electron apps tend to use more memory than other similar applications [27]. This could
lead to decreased performance on low-end hardware. Electron is also dependent on a large amount
of open-source code, and web apps are often very reliant on Node dependencies, which can change
at any time. This reliance could also be perceived as a weakness.

However, despite some of its shortcomings, Electron is still a good fit for Issie’s use case. Issie in
its current form is performant, responsive, and stable; implying that the performance issues with
Electron have not affected Issie significantly enough for there to be notable issues. The advantage
of easy cross-platform development, as well as good integration with Fable (which allows F# to
be used as the programming language), outweighs the risks posed by potential Node dependency
issues, as well as a larger app footprint.
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Fable

While Electron provides a convenient framework for building cross-platform applications, it requires
a JavaScript codebase. JavaScript is a weakly and dynamically typed imperative language - making
it a sub-optimal choice for the development of Issie. The gap between development and deployment
is bridged by Fable [23], a compiler that brings F# to the JavaScript ecosystem. Fable compiles F#
to clean JavaScript code which can run under Electron. Fable also includes bindings for React [28], a
highly performant JavaScript library for building user interfaces; this allows Issie’s F# code to create
React elements which Fable will compile to their respective JavaScript implementations.

2.4.3 User Interface and Rendering

A well-written and structured Graphical User Interface (GUI) is an essential component of any
application, but it becomes even more vital in the context of an application like Issie which priori-
tises an interactive and intuitive interface. In Issie, most of the user’s interaction with the program
is done using the mouse; clicking, dragging, and hovering. This means that the UI code must be
able to handle a constant stream of pseudo-random mouse events and deal with them quickly and
appropriately. It must also be maintainable and extensible to easily allow for more functionality
to be added over time. This section describes the workings of Issie’s UI framework, as well as the
reasoning behind the decision to choose the framework.

Elm, Elmish, and MVU

The Elm Architecture [29], also known as the MVU Architecture, is a pattern for creating interac-
tive programs which emerged from the Elm programming language. Elm [30] is a purely functional
language for creating websites and web apps. Elm compiles to JavaScript - this is similar to how
using F# with Fable allows functional F# code to be compiled to JavaScript for a web app. Issie
uses the Elmish library [31], which brings Elm’s MVU architecture to F# and integrates well with
Fable, enabling Issie’s smooth and robust GUI.

The MVU architecture gains its name from the three parts it splits the UI code into:

Model: A data structure which stores the state of the application. In Issie this is a very
large record, containing lots of information ranging from the results of a simulation to which
components are selected and highlighted.

View: A pure function which specifies how the information in the model (application state)
should be displayed to the user. The developer writes a function to turn the model into
HTML/CSS equivalents, and Elm (or Fable if using F# with Elmish) converts this to actual
HTML/CSS and renders it.

Update: A way to update the application state triggered by events such as user input.
These events are communicated within the program using messages, which are triggered by
the user interacting with the GUI. The update function is a pure function which accepts two
parameters, the incoming message and the current model. It then interprets the message and
returns an updated version of the model.

An initial Model is specified in the code, which is rendered by the View function on application
startup. The user can then interact with the application - each interaction will generate a message
which is passed to the update function. The update function processes this message and, if required,
will return an updated model which reflects the effects of the interaction. On its next invocation,
the View function will render this updated application state, showing the user the result of their
interaction.

The MVU Architecture has numerous strengths, many of which make it suitable for use in Issie.
It’s structure, based on an immutable Model with deterministic (pure) View and Update func-
tions, means that data flows in only one direction through the whole application, while events
which warrant a change in the application state are clearly marked as messages. This making
the rendering process easier to understand for the programmer [32], meaning that more time is
spent writing useful code instead of debugging. This is unsurprising given that Elm, like F# , is
a functional language, and therefore belongs to the "Functional-Static-Strong-Managed" class of
languages mentioned in Section 2.4.1. F# also has features which integrate well into the MVU
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architecture, strengthening it further. One such example is F# ’s strict compile order, which helps
avoid cyclic references between view subfunctions [32]. Altogether, the MVU architecture is a good
fit for Issie, improving the developer experience while delivering a performant UI.

On initial inspection, the design decision of having a View function which repeatedly re-renders
the Model every time there is some update appears inefficient. This would be the case if Elm (and
other implementations of MVU) used the traditional process for rendering a web page/app. This
traditional process for rendering HTML is shown in Figure 2.4. The HTML is parsed and a DOM
(Document Object Model) is constructed; this is a tree representation of the HTML. Whenever
the website/web app state changes, certain parts of the generated HTML change too. The DOM
tree must be updated to reflect these changes, however this is often a slow process for large web
apps with a large number of nodes in the DOM tree, resulting in the UI appearing sluggish. Elm
combats this by using an intermediate Virtual DOM, a lightweight and optimised version of the
main DOM tree on which operations are cheap. As shown in Figure 2.5, Elm exposes this virtual
DOM to the programmer, who specifies how the state should be viewed in the View function. For
each change of state, a new virtual DOM is constructed and compared to the previous virtual
DOM. Through this, Elm can determine the exact change to the UI. Both the construction and
comparison are fast due to the lightweight nature of the virtual DOM. Elm repeats this process for
multiple changes to the UI, creating a batch of updates to be performed on the actual DOM tree at
once. This method significantly reduces the per-update penalty for updating the DOM, allowing
for efficeint re-rendering of the program state. This improves the performance of the web app.
Another advantage of this method is that the task of efficiently updating the DOM is abstracted
away from the programmer, leaving them with only the task of specifying how their website or
web app should look.

Figure 2.4: How browsers traditionally render HTML using a DOM [33]

React

React, as mentioned earlier, is a library for building user interfaces. In the Issie project, Elmish
uses React for rendering the UI due to its efficient virtual DOM. Thus, the virtual DOM mentioned
previously is actually the React Virtual DOM, which is a tree of React Elements. React Elements
are simple objects, and are therefore cheap to create [34], meaning that operations on the React
DOM are computationally inexpensive. The View function returns a React Element which shows
the current state of the UI. React improves the performance of an application by only re-rendering
elements when necessary. The React equivalent of the process mentioned previously where virtual
DOMs are compared to find UI changes is called Reconciliation [34].

React also provides a further method for increasing performance: memoization [35]. Memoization is
most useful when working with components whose state is partially dependent on computationally
intensive calculation. Under traditional React, this value would be re-calculated on every render,
even if it had not changed. This increases the amount of time each render takes. An example of
this would be the result of the addition of two very large numbers (a + b), which is a very CPU
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Figure 2.5: The Elm Architecture [33]

intensive task. Memoization combats this by caching the previous value of the computation and
only performing the calculation whenever a or b changes. Issie already uses some memoization
in its code for the Step Simulator: after a sheet is simulated for the first time the simulation is
cached. If the sheet hasn’t changed the next time a simulation is started, the cached simulation is
used instead of building a new one, increasing performance.

Fulma

Fulma [36] is an F# library which provides a wrapper around Bulma [37], an open-source CSS
framework which provides ready-to-use front-end components for building responsive web inter-
faces. Fulma brings these components to F# for use with Fable React. React components such as
buttons, forms, and tables can easily be specified in the F# code using the functions provided by
Fulma. Listing 2.1 shows the F# code for generating a table using Fulma, while Figure 2.6 shows
the rendered table.

Table.table [ Table.IsBordered
Table.IsNarrow
Table.IsStriped ]

[ thead [ ]
[ tr [ ]

[ th [ ] [ str "Firstname" ]
th [ ] [ str "Surname" ]
th [ ] [ str "Birthday" ] ] ]

tbody [ ]
[ tr [ ]

[ td [ ] [ str "Maxime" ]
td [ ] [ str "Mangel" ]
td [ ] [ str "28/02/1992" ] ]

tr [ ClassName "is-selected" ]
[ td [ ] [ str "Jane" ]

td [ ] [ str "Doe" ]
td [ ] [ str "21/07/1987" ] ]

tr [ ]
[ td [ ] [ str "John" ]

td [ ] [ str "Doe" ]
td [ ] [ str "11/07/1978" ] ] ] ]

Listing 2.1: Simple F# code for generating a table with Fulma [38]
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Figure 2.6: Fulma Table Example

2.4.4 Overview

Figure 2.7: An Overview of Issie’s Technology Stack

We can bring the above sections together to get an overview of Issie’s Technology Stack, which is
presented in Figure 2.7. The core logic of the Issie application is written in F# , with a structure
which allows for adoption of the MVU architecture. Within the View function, using libraries
like Fable.React and Fulma, HTML and React components can be specified. The Elmish library
provides the MVU framework and methods for bringing together the Model data structure, View
function, and Update function. A virtual DOM is necessary for an MVU application because it
allows the application to frequently re-render its state after each update in an efficient manner.
Due to its reliable and performant implementation of a virtual DOM, the React framework is used
for Issie. The library Elmish.React handles the transition from the generic Elmish view to React,
after which Fable compiles all of this F# code to JavaScript for React to render. All of this runs
within Electron, allowing Issie to run as a desktop application despite having the technology stack
of a web app.

2.5 Issie’s UI

2.5.1 Overview and Evaluation
In line with the core principles that state all features implemented in Issie should be Obvious
and Intuitive, Issie’s UI aims to be consistent and straightforward. Consistency in the UI helps
constantly prove a user’s assumptions about the user interface right, creating a sense of control,
familiarity, and reliability [39]. It also plays a crucial role in exposing all of the features of an
application to the user – this is because features which are accessed in an inconsistent manner
may be missed or incorrectly understood by end users. The intuitive guidance provided by a
consistent and straightforward UI means that students using Issie spend less time learning how to
use it compared to other similar applications; at it’s launch most students were able to get started
within five minutes [2]. With the limited amount of time in labs available, less time spent learning
to use tools means more time spent on learning educational content.
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Since its original release, more features have been added to Issie, such as the Waveform Simulator,
with the UI being updated to accommodate these features. At the time of writing, the latest release
version of Issie is version 3.0.0, released on 16th April 2022. Images of Issie’s UI can be found in
Appendix A. On launch, Issie gives the user the option to create a new project or open an existing
one. A project consists of one main sheet, and any number of sub-sheets, which define reusable
custom components. Figure A.2 is an annotated screenshot of a sheet open in Issie. The UI can
be split into the following sections, which are highlighted in different colours in Figure A.2.

Traditional Menu Bar (Highlighted Red): The traditional menu bar, consists of the
"Edit" and "View" menus. It is not used to expose Issie’s core features - instead, it is used
to let the user do basic operations, such as zooming, copying and pasting etc. Many of these
functions are duplicated through keyboard shortcuts or through the buttons in the bottom
left of the sheet (undo, redo, copy, paste). The fact that Issie has two separate menus is a
little strange, and it may be worth moving all functionality from the traditional menu bar to
the top white menu bar. However, this is not an urgent cosmetic issue.

The Canvas: The canvas is the central focus of the application - it is where the schematic is
designed. Components are dragged onto the canvas, with red-dashed lines appearing to show
when a component is aligned with a grid line. Components and connections on the canvas
can be interacted with in many ways, such as hovering, clicking to select, and dragging to
move.

Right Tabs Panel (Highlighted Green): The panel on the right-hand side of the applica-
tion provides the user with ways of (i) affecting the state of the canvas and (ii) gaining insight
into the schematic itself. There are three tabs: the Catalogue, which lets users add new
components to the canvas (users can hover on components for details); Properties, which
lets users view and modify component properties like name and width, and Simulation,
which opens the Step Simulator, giving users the option to start a simulation. Due to the
Step Simulator requiring more display real-estate, the right panel widens when the Simulator
tab is selected. When the Waveform Simulator is running, an additional fourth tab appears
in this section – this makes the tab layout appear cramped.

Top Bar (Highlighted Blue): In the first release of Issie, the white menu bar located at the
top of the application contained controls to, (i) save the current sheet, (ii) Switch to another
sheet in the open project, and (iii) Open another or create a new project. The filepath of the
current project and sheet are also displayed. All of these elements were consistent - with the
focus on interacting with files. A slight grievance with the "Project" and "Sheets" dropdown
menus is that they are not closed by clicking elsewhere in the application, only by clicking on
the menu again. Since then, an "Info" button has been added featuring information about
Issie and a short user guide. While this is not necessarily consistent with the other elements
in its vicinity, the top bar enables the "Info" button to have maximum visibility, something
which a student requiring information may appreciate. One very inconsistent part of the UI
is how the Waveform simulator is accessed. While most actions which analyse the schematic
(e.g. Step Simulator) are accessed via the Right Tabs panel, the Waveform simulator is
opened through a button on the top bar. This causes the previously unseen "WaveSim"
tab to spawn in the right panel, and the panel boundary becomes draggable. The user can
select the waveforms to view (Figure A.3) and then view the waveforms (A.4. The Waveform
simulator’s behaviour is inconsistent with that of the Step simulator:

– Step Simulator displayed in a wider, fixed-width panel. Waveform Simulator displayed
with panel starting at regular width, but the panel can be manually resized by dragging.

– The user can start a simulation in the Simulation tab, and still interact with other tabs.
This is not the case for the Waveform simulator, which locks the user in the WaveSim
tab.

– Step Simulation started and ended with the same button, with a clear indication of
how to end the simulation. There is no end/close button on the WaveSim tab when
waveforms are being viewed. Instead, the user must press the "Edit List" button, which
takes them back to the selection menu where there is a close button. This is very
unintuitive.
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Buttons on bottom-left (Highlighted Yellow): Undo, Redo, Copy, and Paste buttons.
These are four common functions, and therefore it makes sense to have obvious and fast ways
to access them. Useful to get started if the user is not familiar with keyboard shortcuts.

2.5.2 Considerations when adding new features
As discussed in the previous section, Issie’s UI at time of launch was very intuitive and straightfor-
ward. However, when there are fewer features it is easier to condense the interfaces for them into
a well structured and streamlined UI. The inconsistencies of the Waveform Simulator tell a cau-
tionary tale of how new features can introduce impurities into an application’s GUI. This project
aims to add a whole new way of visualising logic (truth tables) to Issie, and given the saturated
nature of the current UI, some redesigning may be necessary to accommodate all features.

2.6 Combinational Logic Simulation in Issie

Currently in Issie, the users can gain an understanding of combinational logic by simulating it
using the Step Simulator. Users provide values for each input to the logic, and can read the output
almost instantly. This indicates high performance. Given that visualisation of combinational logic
through truth tables is likely to require some form of combinational simulation, there is merit in
exploring and understanding the implementation of the performant Step Simulator.

Figure 2.8 provides an overview of Issie’s process for building and running a Step Simulation. In this
process, various checks must be performed; firstly the logic designed by the user must be verified to
be syntactically correct, secondly the organisation of project files must be correct, and thirdly some
Issie specific limitations (e.g. no cycles in combinational logic) must be enforced. Issie’s simulation
building process can be said to have three levels, with each level having an associated data structure
which represents the schematic. These data structures are: the Canvas State, Simulation
Data/Error, and a Fast Simulation. A set of checks are performed at each level, and only upon
passing these checks can a schematic be transformed into the subsequent data structure. If any of
these checks fail due to an issue with the user’s schematic, the simulation building process returns
a SimulationError, which tells the user what the error is and which components/connections are
affected. A key takeaway from Figure 2.8 is that the process of building a simulation is separate
from the process of running it. During the FastSimulation building process, the schematic is
analysed, with components being placed into an appropriate order for combinational reduction.
However, as the FastSimulation data structure is mutable, the values of each input can be updated
without having to rebuild the whole simulation. Therefore, the time taken simulating a different
input combination is quite short, as only the reduction function has to be re-run to find the new
outputs. This distinction between building a simulation and running it with different input values
makes the existing Step Simulator an optimal choice for use in truth table generation, which will
need to simulate multiple input combinations as fast as possible.

2.7 Effects of Application Performance on Users

Interactivity is a key part of Issie, and one of the major contributors to perceived interactivity is the
perceived responsiveness of an application [40], which itself is often tied to application performance.
Perceived responsiveness is relevant in systems where a user’s "perceived control over the interaction
process reflects their ability or confidence in performing related activities". Combining these
findings with the cognitive theory of self-efficacy described in Section 2.1.3, which proposes that
academic performance is linked to perceived ability, indicates that perceived responsiveness is an
important factor to consider when building an educational application. Robert Miller [41] describes
three classes of perceived responsiveness based on a computer’s response time:

• ≤ 100ms: Perceived as instantaneous.

• ≤ 1s: Noticeable but does not lose the user’s attention.

• ≥ 10s: Loses the user’s attention.

Ideally, every interaction would be in the first class, however naturally certain tasks will take
longer than others. In his paper, Miller investigates specific "Topics": examples of human-computer
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Figure 2.8: An overview of Issie’s Step Simulation

interaction, and examines the acceptable response time. A "Response to complex inquiry in tabular
form" (Topic 9) should return a complete response within 4 seconds, but a maximum delay of 2
seconds is preferred. This is particularly relevant to this project as it resembles the operation
of calculating and presenting a Truth Table to the user. Therefore, it could be suggested that in
order for the added Truth Table generation feature to have the maximum positive effect, generation
should take less than 4 seconds in all cases, and ideally less than 2 seconds for simpler cases. By
the same rationale, this time limit should also apply to complex operations on the truth table, such
as reduction with Don’t Cares or Algebra. As mentioned in subsection 2.1.2, engineers tend to be
kinesthetic learners and therefore are likely to prefer tools which let them interactively experiment
with what they are learning. Therefore, it can be proposed that increasing the responsiveness of
Issie (which increases perceived interactivity), will lead to a better learning experience.

2.8 Agile Software Development

Agile software development [42] is an iterative approach to software development, prioritising an
"agile" response to changing requirements and user feedback. In Scrum, a popular Agile framework,
the development team’s plan is split into short sprints: 1-4 week periods of work which deliver
some "product", which is fully usable in its own right [43]. The high-level descriptions of the work
are organised in a structured list called the backlog. The hierarchy in the backlog is as follows
[44]:

• User Story: Is a short, basic task which should not take too long to complete. An example
would be a task to move the waveform simulator to the right tab, next to the step simulator.

• Epic: A large body of work which consists of multiple user stories. An example of an epic
would be to implement truth table generation for a user selection of components.

• Initiative: Represent overarching goals of the software development project, consisting of
multiple epics.

Over successive sprints, the number of stories in the backlog should reduce. There are regular
meetings with the product owners, during which the development team 1 receives feedback which
can then be acted upon. This may often add more work to the backlog. This cycle of continuous
development aims to deliver working products which match user requirements on a frequent basis.
A survey [45] of software projects managed in an Agile fashion found that "The practice of agile

1Usually there is an intermediary (Scrum Master) managing the organisation of the development team. However,
given that Final Year Projects that improve Issie rarely interact with one another, this role is mostly redundant.
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software engineering techniques "is a critical success factor that contributes to the successful agile
software development projects in terms of Quality and Scope". This is also reflected by industry,
where Agile approaches to software development have succeeded where more traditional linear
Waterfall-esque approaches have failed [43].

In the context of this project, the "product owner" is Dr Thomas Clarke, who oversees the over-
all development of Issie, while the "development team" consists of the author and other stu-
dents.
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Chapter 3

Project Requirements

This chapter specifies the comprehensive set of requirements for the updated version of Issie de-
livered by this project, as well as any accompanying documentation. These requirements build up
to a more formal specification that is representative of the project aims, and takes into account
the prior evaluation of the current version of Issie. Upon completion of the project, the deliver-
ables will be evaluated against these requirements to ascertain the extent to which the project was
successful.

3.1 Requirements for Combinational Logic Visualisation

The primary purpose of this project is to develop new ways for visualising combinational logic in
Issie. These requirements specify the features that these novel visualisation methods should have,
as well as constraints on their operation (e.g. required performance). Requirements can either be
essential (Ex) or desirable (Dx). Essential requirements must be fulfilled for the project to be
considered successful.

Essential Requirements

E1.1 Analyse a schematic containing only combinational logic and display a standard numeric
truth table for that sheet.

E1.2 Analyse part of a schematic selected by the user containing only combinational logic and
display a standard numeric truth table for that selection.

E1.2.1 New inputs and/or outputs should be created temporarily (if necessary) to feed inputs
and/or read outputs from the selected logic.

E1.2.2 It must be clear which newly generated inputs/outputs shown in the truth table corre-
spond to inputs/outputs into the selected logic.

E1.3 Have a truth table generating algorithm which can handle:

E1.3.1 Multi-bit inputs and outputs. Any temporary inputs/outputs created while generating
a truth table for a selected logic block must have correct widths.

E1.3.2 Custom Components (sub-sheets), including when they are part of selections.

E1.3.3 Displaying inputs, outputs, and viewers.

E1.4 Give users an option, when possible, to reduce the truth table based on patterns in the logic
(e.g. Don’t Cares).

E1.5 Give users the option to filter the truth table by fixing input or output values.
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E1.6 Truth Tables must be displayed in a clear and easy to understand format, and features
involving truth tables (e.g. filtering, reducing etc.) must be presented in an intuitive way.

E1.7 Truth Table generation and reduction must take no longer than 4 seconds, with an ideal
target of under 2 seconds.

E1.8 Graphical manipulation operations on the Truth Table, such as re-ordering rows, sorting etc.
should appear instantaneous (i.e. take less than 100ms).

E1.9 Use the above features to give users a clearer insight into the digital logic on the schematic,
or to further reinforce their existing understanding.

Desirable Features
D1.1 Generate and display algebraic truth tables.

D1.1.1 At minimum should at least support multiplexer and adder circuits.

D1.1.2 Preferably should have a rich set of algebraic operators with support for most circuits.

D1.2 Provide an interactive truth table interface.

D1.2.1 Mousing over parts of the truth table could have effects on the schematic (e.g. annota-
tions or highlighting).

D1.2.2 Users can rearrange order of columns/rows in the truth table.

D1.2.3 Users can sort the truth table in ascending and descending order.

D1.3 Let the user access truth table related functionality without going through numerous steps
while also keeping the number of buttons on the screen to a minimum to avoid cluttering
the interface.

3.2 Software/Documentation Quality Requirements

In the process of adding new combinational logic visualisation methods to Issie, this project will also
make significant additions/changes to the Issie codebase. This section highlights the requirements
for the quality of the software contributed, along with the documentation for said software.

Essential requirements
E2.1 Deliver performant, working, bug-free code which adheres to Issie’s code guidelines and other

principles such as "MVU-ness".

E2.2 Write comments in the delivered code which adequately explain it such that it may be worked
on in the future by other developers.

E2.3 Deliver code that is easy to maintain for future developers.

E2.4 Provide any other necessary documentation.

Desired features
D2.1 Deliver a tweaked, or possibly partially redesigned UI which exposes all Issie features in a

straightforward and intuitive way to the user, with a focus on extensibility (i.e. can the UI
accommodate for future extensions to Issie?)

D2.2 Update the Issie website with information about any newly added features.
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Chapter 4

Analysis and Design

This chapter describes all the changes and additions made to Issie by this project, as well as
organisational decisions. Additionally, the rationale behind these changes, including an analysis of
high-level methods, will be explained.

4.1 Approach towards Software Development

Features were added to Issie using an incremental and Agile approach [46]. The incremental
approach seeks to write code through a repeated cycle of three steps: (1) Analysis and Design,
(2) Writing Code, and (3) Testing. A basic task/requirement is broken into several parts - with
each of these parts being written as an individual function 1. Each function is tested both as a
unit and when integrated into the codebase. All of these different parts build upon one another
and come together to deliver the desired functionality. One caveat of the incremental approach
is that the intermediate versions of the app are incomplete and therefore not suitable for any
kind of release or proper demonstration. This can make it difficult to get proper feedback on the
state of the application as a whole. This was acceptable within short time-frames, but not for
long-term software development over the course of the project. For that case, the Agile approach
was considered. Small features, represented as a short sequence of stories, were built using the
aforementioned incremental approach during sprints. Upon completion of each feature, it could be
considered that a new "product" (slightly improved version of Issie) was delivered. During each
project meeting, feedback was obtained on the work completed, and any necessary adjustments
will spawn new user stories. Agile is generally used in continuous software development projects;
however, due to the constraints of a Final Year Project: deadlines, need for planning and report
writing, a pure Agile approach was not deemed suitable. Instead, a hybrid approach was pursued,
one which embodies Agile principles while still working within a plan-based framework. During the
planning phase, the backlog of user stories was intelligently structured such that epics were ordered
by importance to the project, and stories within the epics were structured such that features would
be added incrementally. This ordered backlog can be found within the work breakdown structure
(WBS) described in Figure B.1 in Appendix B.

4.2 Technology Stack

This project does not make any deviations from Issie’s existing technology stack, described in
Section 2.4. The F# application code is compiled to JavaScript using the Fable compiler, and is
run as a web app in a desktop environment using Electron. The user interface is powered by React
and the MVU architecture, brought to the F# ecosystem by the Fable.React and Elmish libraries.
New files added to the Issie codebase by this project are split between two existing directories in
the Renderer project. Files which implement features related to actual truth table generation and
reduction are placed in the Simulator directory, while files which implement the UI are placed in
the UI directory.

1"individual function" does not refer to a single F# function, but to a top-level function which uses groups of
helper and sub-functions
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4.3 Top Level UI Changes

The top-level UI of the application has been changed to accommodate truth tables. As a result
of this, the way the waveform simulator is accessed has been changed as well. In prior versions of
Issie, the right tab section had three options: Catalogue for adding new components, Properties
for changing component properties, and Simulation for launching the Step Simulator. When
applicable, Waveform Simulator could be accessed by clicking a button in the top bar, which
would temporarily create an extra tab in the right section. Given that most interactions related
to modifying or gaining insight into the schematic were done through the right section tabs, the
decision was made for the truth table to be displayed there. The large amount of space needed to
display a truth tables and related functionality warranted a separate tab for truth tables. However,
this approach posed some potential problems. During the earlier evaluation of Issie, it was found
that the method of accessing the waveform simulator was inconsistent, and that the waveform
simulator should ideally have it’s own permanent tab too. Therefore, the total number of tabs
would increase from three to five, resulting in a cramped layout. The updated version of Issie
delivered by this project solved this problem by grouping all circuit simulation activity under one
tab. The third tab in the right section has been re-named to Simulations and features three
further sub-tabs, each for the Step Simulator, Truth Table generator, and Waveform Simulator
respectively. This can be seen in Figure 4.1, where the Truth Table sub-tab is open. From this
tab, the user can choose to generate a truth table for the whole sheet. Additionally, if a correct
configuration of components is selected, a second option to generate a truth table for the selected
configuration is also shown to the user. As with the Waveform Simulator, when the Truth Table
tab is open, the dividerbar can be dragged to resize the right section. Previously, there was a bug
where, if the right section was scrollable, the dividerbar height did not dynamically resize. This
bug was fixed by this project.

Figure 4.1: View of Issie’s updated Top-Level UI

4.4 Generating Numeric Truth Tables

The user can generate a truth table by clicking on the Generate Truth Table button. Like the Star
Simulation button in the Step Simulator, this button provides feedback on the correctness of the
canvas to the user through colours. A green button indicates a correct canvas which can be used
to generate a truth table. If there are issues with the schematic, the button will instead be yellow,
and clicking it will inform the user of the nature of the error via an error message and highlighting
the erroneous component. Finally, the button can also be a faded green; this indicates that while
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the schematic is correct, it is unsuitable for truth table generation as it contains sequential logic.
This is done to maintain consistency with the Waveform Simulator button, which becomes faded
when there are no sequential components.

When the user generates a truth table, a numeric truth table is generated at first. Due to perfor-
mance reasons, which will be discussed later, Issie will only generate up to the first 1024 rows in a
truth table. In cases where the truth table should have been larger than this limit, it is considered
truncated. The user is warned of this through a yellow coloured popup with the following message:
"The Truth Table has been truncated to 1024 input combinations. Not all rows may be shown.
Please use more restrictive input constraints to avoid truncation". Once a truth table is generated,
the user can interact with it in numerous ways through the user interface, transforming and regen-
erating it as necessary. Figure 4.2 shows two views of the Truth Table tab, which contains a menu
with collapsible sections. The compact view (Figure 4.2a) is the default, with all sections other
than the one displaying the truth table, reduction operations, and base selector being collapsed.
The other sections can be expanded to reveal additional functionality; Figure 4.2b shows the view
of the Truth Table tab when all sections are expanded. The tab section is also scrollable.

Figure 4.3 shows a high-level overview of the truth table generation process. This process will be
covered in more detail in the Implementation chapter, but the overall process can be summarised
into three phases: building the simulation, finding the input combinations which make up the
left-hand side of the the truth table (Input Space), and simulating each combination in the input
space to build the truth table. Decisions had to be made on how to generate the input space, as
well as how to simulate each input combination.

(a) Compact View (b) Expanded View

Figure 4.2: Contents of Truth Table tab after a truth table has been generated

A decision also had to be made regarding the handling of multi-bit IOs. In Issie, inputs to combi-
national logic can be multi-bit (width > 1), and propagate through the logic via multi-bit buses.
Two possible approaches for handling these multi-bit inputs were considered. The first option
was to split a multi-bit input into its constituent bits in the truth table; this aligns more closely
with the actual hardware implementation of the logic [47], where component ports only accept a
single-bit signal. However, this is not user-friendly at all - for example a 32 bit bus would be split
into 32 different inputs. This would massively increase the number of columns in the truth table,
impacting the utility of the truth table as an aid. Furthermore, splitting inputs and outputs into
separate bits would obscure certain relationships, such as those of arithmetic circuits. Instead, the
decision was made to represent each multi-bit input/output as one column in the truth table, with
the value shown in hexadecimal format by default. The user can choose between hexadecimal,
decimal, and binary representations.
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4.4.1 Decision to re-use Step Simulation Code

At its core, generating a complete numeric truth table is a brute-force process. Each possible
combination of input values must be simulated to calculate the corresponding output values, and
the relationship should be recorded in the table. Given that Issie already features a performant
and reliable simulator (step simulator) for calculating the outputs of combinational logic, the
decision was made to use as much of its implementation as possible. This approach has many
advantages:

• The existing step simulator has been extensively tested by end-users, meaning that its im-
plementation is most likely bug-free. By using it, it will reduce the chance of the new feature
introducing new bugs.

• In most cases, reusing existing code is much faster than writing new code from scratch. Not
only is time saved on writing new code, but the amount of time spent debugging is also
reduced.

• Reusing existing code will help keep the overall size of the codebase small. Not only does
this help future programmers who work on the project by reducing how much they have to
understand, but it also means that any future improvements made to the simulation code
are also improvements to Truth Table generation.
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Figure 4.3: High-Level view of Truth Table Generation

4.4.2 Evolution of the Input Space Generation Algorithm

The process of calculating the input space, highlighted in purple in Figure 4.3, had two versions.
The change from the first to the second version affected the overall structuring of operations on
truth tables in the application. Initially, the entire input space was calculated and simulated. This
would result in a very large, exhaustive truth table – one which contained every possible input and
output combination. The user would haven been able to reduce this truth table by filtering the
table or using Don’t Care Reduction. However, several issues arose with this approach, with the
most crucial being that of performance.

For a truth table with n inputs (x1..xn), each of width w, (w1..wn), the number of rows in the
truth table is given by the sum of all widths raised to the power of 2, as shown in Equation 4.1.
For example, a schematic with three inputs, with widths: w1 = 1, w2 = 2, w3 = 3 would result in a
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truth table with 64 rows. This sum-of-widths formula is derived from the idea that if we define a
set Si as the set of all possible input combinations for input xi, the left-hand side of a truth table
is the Cartesian Product of all sets from S1 to Sn. This project defines the left-hand side of the
truth table as the input space of the truth table, and the right-hand side as the corresponding
output space.

Row Count =
n∏

i=1

2wi =

n∏
i=1

Si = 2(
∑n

i=1 wi) (4.1)

The complexity of finding the Cartesian product of multiple sets is an exponential function of the
number of sets. For example, the complexity of finding the Cartesian product of n sets, each of
size s, would be O(sn). The size of each set is dependent on the width of the input; Issie does not
limit input widths, meaning that the size of the sets may also be very large. For example, a single
16-bit input has 65536 unique values, and combining this with a second 16-bit input yields an
input space of 232 combinations (over 4 billion). Simulating this large number of combinations and
storing the result takes upwards of 20 seconds, violating essential requirement E1.7. Additionally,
a sufficiently large input space could cause the system to run out of memory and crash, which is
unacceptable. Along with the practical issues with the generation of the complete truth table, it
can also be argued that a very large complete truth table is not useful to the user. According to
the Atkinson-Shiffrin memory model described in Section 2.1.1, external stimuli only stay in the
sensory register for 0.5 seconds prior to decaying. A large number of rows is likely to overload the
sensory register, meaning that it is likely that the information will not pass to short term memory
unless the the user slows down and processes each row one-by-one. Even if this were the case,
a truth table with a large number of rows would take over 30 seconds for the user to read and
process. Given that short term memory decays in 30 seconds, this means that the user will likely
have forgotten the first row by the time they finish reading the last one. Therefore, the method of
generating and simulating the entire input space to create an exhaustive truth table was deemed
unfit.

As a result, the decision was made to truncate the truth table; generate and simulate only part
of the input space. The current limit is 1024 rows. Considering that users would only be able to
focus on a small subset of rows at a time, and would likely reduce the size of the table anyways,
this approach would sacrifice very little for a significant gain. However, any subsequent operations,
such as filtering and reduction, would take place on the truncated table, which does not contain
all of the necessary data. The nature of these issues, as well as the steps taken to mitigate them
are:

Issue 1: Input constraints will be applied to the truncated table, so user may not see a full
representation of the relationships for the case they enter. For example, consider the input
X which has a width of 8 bits (so values range from 0 to 255), but due to truncation, only
rows with values of X up to 31 are present. If the user applies the input constraint X = 32
to the table, an empty table will be returned as no rows which fulfil this condition exist in
the truncated table.

Solution 1: Apply input constraints during truth table generation. This is achieved by
using the constraints to determine a tighter input space, and then simulating that. Giving
users a way to choose which inputs contribute more to the input space (they can fix certain
inputs and let others vary within bounds) allows them to interactively generate truth tables
that deliver the most information to them.

Issue 2: Output constraints will be applied to the truncated table, which is missing many
rows. Due to this, the result of applying the output constraints will include all rows which
match the condition.

Solution 2: Unfortunately there is not much that can be done to combat this issue alone
other than warn the user that they are looking at incomplete results. However, if the user is
able to use input constraints to sufficiently reduce the input space first, output constraints
could help filter the table further.

Issue 3: Don’t Care Reduction will occur on the truncated table, which does not fully repre-
sent the logical function performed by the circuit. This could result in incorrect relationships
being inferred by the reduction algorithm.
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Solution 3 Much like with output constraints, there is no perfect solution as relationships
for reduction are inferred from the truth table. Don’t Care reduction is therefore limited to
smaller schematics which do not produce truncated truth tables. The user is instead guided
towards reducing truth tables for larger schematics with Algebraic Reduction.

Implementing Solution 1 required a new method of generating the input space. The new method
needed to know which sub-sets of the input space it could and could not generate before it actually
generated it using the Cartesian product method. Further details of the workings and implemen-
tation of this method can be found in the Implementation chapter.

4.5 Generating Truth Tables for a partial selections

The motivation behind Requirement E1.2 is that a large schematic with lots of components will
often contain smaller blocks of logic within it. These blocks may be defined Custom Components,
or simply be a collection of gates in one corner of the canvas. Either way, there is value in the user
being able to isolate these blocks and learn about the combinational logic implemented by them.
Such functionality would also allow users to take a divide-and-conquer approach to debugging
logical errors - individual blocks could be inspected to ascertain if they had been implemented
correctly.

A challenge with generating a truth table from part of a canvas is that Issie has no existing method
for simulating part of a canvas. When working with a whole sheet, the inputs and outputs are
well-defined; sheets where any ports aren’t connected to inputs/outputs throw Simulation Errors.
In contrast, a partial selection from a sheet will rarely contain all inputs and outputs. Two methods
were considered for simulating the selected logic to generate a truth table, with the latter being
chosen.

1. Extracting the Fast Simulation and feeding values into specific wires. This method
would have involved creating a Fast Simulation for the whole sheet as usual, but then manu-
ally changing values in component arrays and seeing how those changes propagated through
to the output connections of the selected logic. While this method seemed fit initially, sev-
eral issues were found after some analysis. The Fast Simulation would be built for the whole
sheet, meaning that an error elsewhere on the canvas would stop the selected logic from be-
ing simulated. Custom Components would also be harder to manage as the Fast Simulation
datatype flattens the design, meaning that all nested logic in Custom Components would be
expanded out. The new logic would also be quite different from the truth table generation
logic for whole sheets - this is not ideal for future code maintenance purposes.

2. Intelligently building and correcting a new Canvas. Following the highlighting of
the issues with the first approach, an alternative approach was put forward. Rather than
attempting to work with the complicated Fast Simulation data structure, it instead aims
to use as much of the existing code as possible by treating the selected logic as a separate
instance of a Canvas State and trying to simulate it using the same method as simulating a
whole canvas. The main difference between simulating a whole sheet and simulating selected
logic is the lack of guaranteed input and output components. This is overcome by finding
which ports/connections are inputs/outputs for the selected logic, then intelligently adding
’phantom’ input/output components to the canvas in a process called Canvas Correction.
Once a corrected canvas corresponding to the selected logic is created, the logic used for
generating and viewing a Truth Table for a whole sheet can be reused.

The method implemented by this project first sanity-checks the part of the sheet the user has
selected. Following this, the canvas correction algorithm adds new Input and Output components
to the partial selection to transform it into a valid Issie schematic. The existing truth table
generation process can then continue using this valid schematic.

4.6 Filtering with Constraints

Once a truth table has been generated, it can be filtered using constraints; these can be equality or
inequality constraints. Equality constraints on an input or output (IO) are of the form IO = value,
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where the truth table is filtered such that only rows where the input or output (IO) is equal to the
given value are shown. Inequality constraints are of the form LowerBound ≤ IO ≤ UpperBound;
the filtered truth table will only contain rows where the IO is between the lower and upper bounds
(inclusive). Due to reasons that will be discussed further in this chapter, applying input constraints
will re-generate the table, while output constraints will only filter the existing table. Constraints
are added through a popup window as shown in Figure 4.4a. Issie validates all constraints in
real time; the user is prevented from entering an invalid constraint and is told the why it is
invalid. This can be seen at the bottom of Figure 4.4a, where the message informs the user of
the issue with the constraint they are trying to add. This approach has two major advantages.
Firstly, from a system design perspective, the logic which applies the constraints can trust that
all the constraints are well-formed and do not conflict with one another, maintaining robustness.
Therefore error handling for constraints need not be implemented in these sections. Secondly, from
a user experience perspective, this approach is more obvious and intuitive, aligning it with Issie’s
core principles. The issue with the user input (invalidity of the constraint) is addressed at the
moment it happens, making it clear to the user exactly what has gone wrong. This is far more
clear than propagating the error to the user later on in the process. Once added, the constraint
will appear as a small tag in the Filter section – the constraint can be deleted by clicking the cross
on the tag; alternatively all input or output constraints can be cleared by clicking the Clear All
button for each respective group.

4.6.1 Constraint Validation Rules

1. All entered values must be valid numbers – numbers can be entered in decimal, hex (0x), or
binary (0b) form.

2. All entered values must not exceed the width of the IO, with checks also implemented for
negative numbers (e.g. cannot enter 9 or -6 for a 3-bit IO).

3. Constraints must be unique; the entered constraint must not already exist.

4. Constraints must not overlap. For example, if a constraint X = 5 exists, the constraint
4 ≤ X ≤ 7 cannot be added (and vice versa).

5. For inequality constraints, the upper bound must be greater than the lower bound. This
check is always performed using the unsigned representation of the number entered.

(a) Popup for Adding an Input Constraint (b) Filter section after adding a constraint

Figure 4.4: Adding a Constraint to the Truth Table

4.7 Hiding Output Columns

The second menu section allows the user to hide (or un-hide) output or viewer columns from the
truth table. This means that the user can choose to focus on relationship between the inputs and
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a specific output. This may be useful when analysing arithmetic circuits – the user may wish
to hide the carry-out column to only focus on the result. As can be seen in Figure 4.2b, each
output/viewer has a toggle component which has two options: visible and hidden. These are used
to set the visibility of columns in the truth table. The action of hiding at output column takes
less than 100ms – this is classed as instantaneous. Achieving this required specific decisions to be
made regarding how to the truth table was rendered; these will be discussed in Section ??.

4.8 Graphical Manipulation of Truth Tables

Re-ordering Columns On either side of each IO label in the heading row, there are left and
right arrows. These allow the user to arrange the truth table as they please by changing the order
of columns in the truth table.

Sorting In each IO heading cell, there are a pair of up/down arrows for sorting the truth table by
the values of that IO. Selecting the up arrow sorts in ascending order, while selecting the down arrow
sorts in descending order. Once selected, an arrow remains highlighted (until another is selected),
to inform the user of how the truth table is being sorted. The rationale behind implementing truth
table sorting is that it allows users to organise the information they view, increasing the control
they have over their learning experience.

Auto-resize with dividerbar The draggable dividerbar can be used to resize the right section.
The truth table will dynamically resize to match the set right section width, and contents of cells
will wrap to the next line and automatically adjust such that no content is cut off.

All of the operations above happen instantaneously (<100ms); achieving such performance with
column-based operations relied on the same decisions as those which made hiding columns appear
instantaneous (see Section ??).

4.9 Don’t Care Reduction

If the generated numeric truth table is not truncated, then the user can reduce it through Don’t
Care reduction. When the user presses the Reduce button, the truth table will be analysed, and
any rows where certain inputs are redundant will be collapsed, with the value for that input being
replaced by an X. The user can always return to the full table by clicking the Back to Full Table
button. Like their full numeric counterparts, reduced truth tables can also be filtered and sorted.
If the truth table is truncated, Don’t Care reduction is unavailable; this is communicated to the
user by a greyed-out Reduce button. Hovering over the disabled button will show the user a popup
explaining why the option is unavailable.

As discussed in Section 2.3.1, two possible methods of implementing DC Reduction were consid-
ered; either porting an existing heuristic-based minimisation tool to Issie, or writing a reduction
algorithm from scratch. Ultimately, the latter was chosen. This is because existing minimisation
tools are tailored towards hardware design in industry, where the priority is simplifying the design
so it requires fewer components. There is a risk that complicated simplification may in fact obscure
the logic further; this is the opposite of this project’s intention. Further to this, current minimi-
sation tools like Espresso [15] do not support multi-bit inputs and outputs, which would make
integration with Issie’s existing framework difficult. Given the decision to not split up multi-bit
IOs in Issie, Espresso was deemed unfit. The custom reduction algorithm takes an un-truncated
numeric truth table and attempts to reduce it by recursively finding redundancies through row
comparisons.

4.10 Algebraic Truth Tables

In addition to numeric truth tables, this project also adds algebraic truth tables to Issie. Instead
of numerical values, outputs are instead represented as an algebraic function of their inputs. These
algebraic functions are loosely based on Boolean algebra, but do include other operators such as
addition and subtraction in order to provide a more useful summary of relationships. Users can
introduce algebra into an existing numeric truth table by clicking the Algebra button above the
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Figure 4.5: Algebra Input Selector popup

truth table. This will spawn a popup, where the user can choose which inputs to set as algebraic,
and which inputs should remain numerical. There exist cases when certain inputs cannot be set
as algebra, such as when an input is connected to the select (SEL) port of a multiplexer. The user
is prevented from setting those inputs as algebraic values, and a helpful error message informs the
user why. An example of this can be seen in Figure 4.5

4.10.1 Designing the System for Algebra
The design of the system for the generation of Algebraic Truth Tables was one of the most complex
activities undertaken by the project, with numerous decisions being taken regarding which features
to implement and the overall approach to take. The requirements stated that support for circuits
containing combinations of multiplexers and adders was the bare minimum (D1.1.1), but ideally
Issie should support algebra for most combinational circuits.

Decision 1: Algebraic Reduction vs Algebraic Generation

It was originally envisaged that algebraic truth tables would be obtained through reduction. An
exhaustive numeric truth table would be generated, and algebraic relationships would be inferred
from it. This could possibly have been achieved through converting the truth table into SOP
form, and then reducing the resultant Boolean equation using algebraic identities or existing logic
minimisation tools like Espresso. However, following some analysis of this approach, it was deemed
unfit. The requirement for an exhaustive truth table limits algebraic reduction to small circuits,
while the nature of multi-bit inputs in Issie makes existing minimisation techniques difficult to
integrate into the application. Therefore, it was deemed that reducing a numeric truth table to
create an algebraic truth table was not a viable strategy. his meant that algebraic truth tables
would have to be generated directly from the schematic.

Decision 2: Schematic Analysis vs Schematic Simulation

Following the conclusion that algebraic truth tables would have to be directly generated from the
schematic, two approaches for doing so were considered. The first was to analyse the schematic and
attempt to match it to a specific case (e.g. a multiplexer circuit). The idea was that each case would
describe a pre-defined algebraic relationship, which would then be returned to the user. It was
thought that the approach could be extended to more complex circuits by recursively searching for
cases contained within the circuit. The second approach was far more general; introduce a method
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for simulating a sheet in Issie with algebraic inputs and outputs. This would be implemented as
an extension to the Fast Simulator.

The advantage of the first approach was that Requirement D1.1.1 would be fulfilled quite easily.
Following the experience of writing the Canvas Correction algorithm, it was known that checking
for specific cases in the canvas state was possible, and therefore recognition of multiplexer and
adder circuits could be implemented quickly. However, extending it further than that could be
more challenging; the canvas state is closely related to how the user has built the schematic, and
there are many different ways of implementing the same logical function. Therefore, adding support
for complex relationships would likely require many cases to be checked. Furthermore, repeatedly
checking the canvas state for increasingly complicated cases would increase the generation time.
On the other hand, adding algebra to the Fast Simulator would be a lengthy process, increasing the
amount of time required to complete D1.1.1. However, as the Fast Simulator is already compatible
with all correct Issie schematics, it would be easier to extend algebraic simulation, as required by
D1.1.2. Merely modifying the Fast Simulator would also introduce fewer lines of code into the
Issie codebase, making further maintenance easier. Additionally, adding algebraic simulation to
the Fast Simulator would mean that the Step Simulator, in theory, would also be able to support
algebra.

With all points considered, algebraic simulation was chosen over analysing the schematic. The
Fast Simulator has been augmented so that it can receive both numeric and algebraic values as
inputs to a simulation. It will then return outputs as functions of the algebraic inputs.

4.11 Considering Logic Input with Truth Tables

In addition to visualising combinational logic, the possibility of using truth tables as a method
for combinational logic input was also considered. Issie in its current form only allows for com-
binational logic input via the canvas; components and connections are manually arranged by the
user into a valid schematic. The goal of the digital electronics and computer architecture curricu-
lum at Imperial College is to first build up students’ understanding of digital circuit design using
schematics, and then eventually transition to the use of Hardware Description Languages (HDLs)
in subsequent modules. Component-level schematics tend to focus on the propagation of digital
signals through multiple components, while HDLs describe circuits at a behavioural level, focusing
on the relationships between inputs and outputs. Defining logic using truth tables could bridge the
learning gap between these two concepts; prompting users to shift their design approach towards
the more abstracted view of functionally mapping inputs to outputs, while also providing a familiar
environment (truth tables instead of Verilog) for defining those functions.

The following system was envisaged: users would be able to define a custom hierarchical component
by defining the truth table for that component. This process would begin by the user providing
the names and widths of each input and output on the custom component. Using the provided
inputs, the input space (left hand side) for the component’s truth table would be calculated and
displayed to the user with a blank right-hand side. For small input spaces, the user could manually
enter the output corresponding to each input row. For larger input spaces, the user would be
prompted to set certain inputs as algebra, and populate the outputs with algebraic expressions
which were a function of the inputs. The arguments for and against implementing this system
were considered, and are presented in Table 4.1. While there was a concern that giving users a way
to directly define components may detract from them learning schematic design, it was decided
that from an educational perspective the system would improve Issie. However, certain issues
with the implementation of algebraic truth tables for logic input were identified. A GUI would
have to be developed for users to enter algebraic expressions; these would then have to be lexed
and parsed. This activity was estimated to take a significant amount of time. Additionally, the
algebraic relationships would have to be converted to Verilog. It was deemed that the educational
benefit brought by implementing logic creation through user-entered truth tables was outweighed
by the time investment necessary to implement the system and that more tangible returns could
be achieved by focusing that time elsewhere.
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Pros Cons

Can help bridge the conceptual gap between
component-level design and more abstracted
HDL design patterns.

While gate-level design and HDLs are widely
used in industry, Issie’s algebraic truth table
system is not standard. Therefore, using it
may not transfer well into later education or
industry.

Would decrease the time spent designing spe-
cific components, as specific gate level opera-
tions need not be considered. This improves
the user experience.

Decreasing the number of times students build
gate-level designs could itself detract from
their learning experience.

Flexible, users can choose to define all cases or
use algebraic expressions to define the compo-
nent. For example, inputs which control cer-
tain parameters of operation can be left as nu-
meric values, while operands to functions can
be defined as algebraic expressions.

A GUI for entering truth tables will have to
be created. Additionally, to support algebra
a GUI, as well as a lexer and syntax checker
will have to be created – this is will take a
significant amount of time. If algebra is not
implemented, truth table definitions may only
be used to define less complex components,
decreasing the effectiveness of the system.
Issie schematics currently can be exported as
Verilog. Therefore, a function for converting a
truth table component to Verilog would have
to be written. This is straightforward for pure
numeric truth tables, but challenging for alge-
braic truth tables.

Table 4.1: Arguments for and against implementing truth-table defined custom components
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Chapter 5

Implementation

This section describes the manner of implementation of all features described in the previous
section, discussing specific methods, algorithms and language constructs. The additions made
by this project project are implemented almost entirely in F# , and the complete codebase can
be found at https://github.com/adidesh20/issie. The specific in-code changes made by this
project can be found by viewing the commit history of the repository. The repository additionally
serves as a logbook of completed work; commit messages are time-stamped and provide context to
code changes. While this section discusses many interesting aspects of the project implementation,
including challenges, compromises, and intelligent design, granular details of the pure coding activ-
ities of the project are not given. The code was written and structured with readability, re-usability
and efficiency in mind – some examples of these concepts in action are highlighted, however the
adherence of the code to these concepts can be verified by inspecting codebase itself.

5.1 Overview of Data Types

Various new F# types have been introduced to Issie by this project. This section describes these
types and provides context to them, explaining their function and the rationale behind their cre-
ation.

5.1.1 Types for Representing Truth Tables

Data Type/Structure Information

Cell Data

Discriminated Union type representing what data each truth table
cell can hold. Cells can hold Bits (represented by Issie’s WireData
type), Algebraic expressions (represented by strings), or a Don’t
Care.

Cell IO

Discriminated Union type representing which input or output of
the logic the data belongs to. CellIOs can either be the exist-
ing SimulationIO type used to describe Inputs and Outputs, or
Viewers.

Truth Table Cell Record type which represents the contents of a cell in a truth
table. Is made up of a CellIO and some CellData.

Truth Table Row Represents a row in a truth table, which is a list of Truth Table
Cells.

Truth Table

Record type containing various Map data structures which map a
row of inputs to a row of outputs. Different map data structures
are used for caching different versions of the truth table. The
record also contains fields and methods which contain or relay
other metadata about the truth table.

Table 5.1: Data Types and Structures used for Truth Table Representation
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Truth tables in Issie are mostly stored as a mapping from input rows (each containing a single
input combination) to output rows. This is implemented using the F# Map type; therefore a truth
table map has the type Map<TruthTableRow,TruthTableRow>. The F# Map type implements
immutable maps based on binary trees, which have a lookup time complexity of O(log(n)) [48].
This is an improvement on traditional lists and arrays, which have a lookup time complexity of
O(n). Maps were chosen to store truth tables as it would be faster to look up an output row using
a given input row. The TruthTable data type is a record containing fields which store cached
truth table representations, as well as other data. The fields of this record are described in Table
5.2. Caching different versions of the truth table trades a slightly increased memory usage for
time saving, as operations on the truth table do not need to be re-applied every cycle of the view
function.

Field and Type Explanation

TableMap:
Map<TruthTableRow,TruthTableRow>

The result of truth table generation. Contains the
initially generated truth table with input constraints
and algebraic inputs applied.

DCMap:
Map<TruthTableRow,TruthTableRow>

The result of performing Don’t Care Reduction on
TableMap. Is an Option type, so is none if the table
has not been DC Reduced.

FilteredMap:
Map<TruthTableRow,TruthTableRow>

Cached result of filtering TableMap or DCMap with
output constraints.

SortedListRep: TruthTableRow list

The result of sorting the truth table stored in Fil-
teredMap. The truth table is stored as an ordered
list because Maps in F# cannot retain a custom or-
der.

IsTruncated: bool True if the truth table had to be truncated in the
generation process.

MaxRowsWithConstraints: int

The number of rows the truth table should have after
applying input constraints, but prior to truncation.
Used to calculate how many rows have been lost to
truncation.

TableSimData: SimulationData Simulation used for the truth table, cached for use
during table re-generation.

IOOrder: CellIO list
List of all CellIOs in the truth table, in the order they
originally were when the truth table was generated.

(member) Inputs: CellIO list
Member function which returns a tist of all inputs in
the truth table.

Table 5.2: Explanation of TruthTable Record fields

5.1.2 Constraint Types

This project adds two types of numerical constraints; equality constraints and inequality con-
straints, the type definitions for which can be seen in Listings 5.1 and 5.2. Equality constraints
on an input or output are of the form IO = value, where the truth table is filtered such that only
rows where the input or output (IO) is equal to the given value are shown. Inequality constraints
are of the form LowerBound ≤ IO ≤ UpperBound; the filtered truth table will only contain rows
where the IO is between the lower and upper bounds (inclusive). There is also a ConstraintType
DU which differentiates between Equality (Equ) and Inequality (Ineq) constraints.
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Listing 5.1: Definition for Equality Con-
straint

type EqualityConstraint = {
IO: CellIO
Value: int

}

Listing 5.2: Definition for Inequality Con-
straint

type InequalityConstraint = {
LowerBound: int
IO: CellIO
UpperBound: int
Range: int

}

A set of constraints is therefore simply a list of all equality constraints combined with a list of all
inequality constraints. This is the definition of the ConstraintSet type.

5.1.3 Algebra Types

Algebraic Operators

Table 5.7 in Section ?? describes the algebraic operators the user may encounter in Issie. This
sub-section describes the F# implementation of these operators. Algebraic operators in Issie are
split into three Discriminated Union types: binary operators (type BinaryOp which have two
operands, unary operators (type UnaryOp) which have one operand, and comparison operators
(type ComparisonOp). Currently, the there is only one comparison operator: Equals, which
compares an algebraic expression to an unsigned integer value. Listings 5.3 and 5.4 show all
the different cases of binary and unary operators. There is one key omission from F# binary
operators; the Append Operator. Initially, this was implemented as a binary operator, joining
the two operands. However, in circuits with multiple connected MergeWires components, a chain
of nested append operators would form. Figure 5.1 shows such a circuit. Expression 5.1 is the
result of performing algebraic simulation when appends were implemented as binary operators.
It features three pairs of parentheses which clutter the expression. In contrast, Expression 5.2
communicates the same information without brackets. This cleaner expression was obtained by
representing append operations as lists of expressions during algebraic simulation. This list itself
is treated as an algebraic expression – the nature of algebraic expressions in Issie is explained
in Section 5.1.3. A list representation is also easier to analyse, meaning that specific patterns
in appends can be inferred. For example, successive appends of consecutive bits of the same IO
(A[7] :: A[6 : 3] :: A[2]) can be folded into one Bit Range operation (A[7 : 2]).

Listing 5.3: Definition for Binary Operators

type BinaryOp =
| AddOp // A + B (

mathematical addition)
| SubOp // A - B (

mathematical
subtraction)

| BitAndOp // A & B (
bitwise AND)

| BitOrOp // A | B (
bitwise OR)

| BitXorOp // A XOR B (
bitwise XOR)

Listing 5.4: Definition for Unary Operators

type UnaryOp =
| NegOp // -A (

mathematical negation ,
bitwise two 's
complement)

| NotOp // bit inversion (
bitwise XOR with -1)

| BitRangeOp of Lower:int
* Upper:int // A[upper:
lower] (subset of bits
of A)

| CarryOfOp
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Figure 5.1: Circuit with multiple
MergeWires connected to each other

OUT = (D :: (C :: (B :: A))) (5.1)

Append as a Binary Operator

OUT = D :: C :: B :: A (5.2)

Append as a list of appended expressions

Algebraic Expressions

Using a DU type, a short grammar was written to represent algebraic expressions in Issie. The
grammar writing process in particular validated the choice of F# as a programming language for the
project; the DU type allows for the grammar to be defined succinctly (only 7 lines of code), while
pattern matching on DUs enables evaluation of an expression through a single recursive function.
Large class hierarchies are therefore not required. Algebraic expressions in Issie are defined by the
type FastAlgExp – the prefix Fast is used as the algebraic expressions are used within the Fast
Simulation.

According to the grammar, an algebraic expression (FastAlgExp) in Issie can be:

1. SingleTerm of SimulationIO: Represents a single algebraic term, which is an input. This
case has the type SimulationIO as every input in Issie is represented by that data structure.

2. DataLiteral of FastData: Represents a numeric value in the simulation.

3. UnaryExp of Op: UnaryOp * Exp: FastAlgExp: Represents a unary expression. The
unary operator (Op) takes the expression (Exp) as its operand. An example would be −A.

4. BinaryExp of Exp1: FastAlgExp * Op: BinaryOp * Exp2: FastAlgExp: Represents
a binary expression, in which a binary operator (Op), such as ’+’, operates on two expressions.
Exp1 is the left operand, Exp2 is the right operand.

5. ComparisonExp of Exp: FastAlgExp * Op: ComparisonOp * uint32: Represents a com-
parison between an algebraic expression (Exp) and a numeric value.

6. AppendExp of FastAlgExp list: Represents an expression that is made up of a group of
existing expressions appended together. The list is ordered such that the most significant bit
is at the head of the list. F# lists are are implemented as singly-linked-lists, therefore adding
a new item to the head of a list is an O(1) operation. Therefore, having the MSB at the head
of the list means that appending something further onto the AppendExp is efficient.

5.1.4 The TableInput Data Type

The TableInput data type was used in the implementation of an earlier algorithm for generating
the input space of the truth table. The data type, and the method that requires are no longer used
in Issie. However, as the method is described in the report, details of this data type are included
for context.

As discussed in Section 4.4.2, the method for generating a limited input space needs to know exactly
which specific input combinations to generate out of potentially billions of possible combinations.
To achieve this, a new data structure for representing inputs was required; one which stores more
than the SimulationIO type. The TableInput is a record type, and its fields are described by
Table 5.3. The term Row Count in the context of the input space generation refers to the size of
the set (Si) of unique values an input (xi) can contribute to a table.

5.1.5 Table Manipulation Data Types

The following data types are used in messages sent from the view function to the update function
to indicate that some UI interaction has occurred which requires updating certain parts of the
model.
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Field and Type Explanation

IO: SimulationIO
Inputs in Issie are represented by the SimulationIO type,
which contains the Component ID, Component Label, and
the width of the input.

IsAlgebra: bool True if the input is algebraic, as opposed to numeric

MaxRowCount: int The total size of the Set Si, which is equal to 2wi , where
wi is the width of the input.

ConstrainedRowCount:
int

The size of the subset of Si which contains all input values
which conform with the input constraints. For example,
if there were the following constraints on the input: 0 ≤
x ≤ 6 & x = 9, the Constrained Row Count would be 8.
Constrained Row Count is always less than or equal to Max
Row Count.

AllowedRowCount: int

The number of input values the given input is actually al-
lowed to contribute to the truth table. Ideally, this is equal
to the Constrained Row Count, but in situations where the
truth table has to be truncated, the Allowed Row Count
may be limited to keep the total number of rows in the
truth table under the overall limit.

Table 5.3: Explanation of Fields in the TableInput data structure

Truth Table Sorting direction

Listing 5.5: Definition for Sort Type

type SortType = | Ascending | Descending

As shown in Listing 5.5, sorting can be done in ascending or descending order.

Changing the Order of Columns

Listing 5.6: Definition for Movement Direction

type MoveDirection = | MLeft | MRight

As shown in Listing 5.6, columns can be moved left or right.

5.2 Top Level UI Changes

5.2.1 Simulation Sub-tabs
All activities that involved some form of circuit simulation were organised under the Simulations
tab (formerly called Simulation) using sub-tabs. The right section tabs are implemented with
the Fulma [36] Tabs component. The Sub-tabs are implemented by nesting a second Fulma Tabs
component within the body of the Simulations tab, and making ensuring that a sub-tab is visible
only when it and the parent tab is open.

5.2.2 Moving the Waveform Simulator
Due to its inconsistent placement and strange tab-spawning behaviour, the decision was made to
move the waveform simulator into its own, permanent sub-tab. The move was quite straightfor-
ward; the Waveforms button was moved to the sub-tab, a greeting was also displayed. However,
one small change had to be made to how the waveform simulator operated. When a waveform
simulation is running, other tabs in the app are inaccessible by design. Previously, the waveform
simulation tab would only open when the user was either starting or viewing a waveform simula-
tion. Therefore, the existence of the tab was a valid metric for ascertaining whether the app should
make other functions inaccessible. Following the changes, however, the existence of the waveform

36



simulation tab is independent of whether a waveform simulation is running. Therefore, a new pair
of messages LockTabsToWaveSim and UnlockTabsFromWaveSim can be used to control when the
user is locked into the Waveform Simulator.

5.2.3 Dynamic Dividerbar Resizing

The dividerbar is situated between the canvas and the right section and marks the boundary
between the two. During waveform simulation, the dividerbar becomes draggable to let the user
view more content by resizing the right section. This functionality was also extended to truth
tables. However, there was a bug in the implementation of the dividerbar. The CSS Style for
the dividerbar element sets its height to 100% of the right section. If the height of the content in
the right section exceeds the initial height of the right section, the latter overflows and becomes
scrollable. The 100% height styling on the dividerbar did not take the overflow into account,
meaning that the dividerbar would slowly disappear off screen as the user scrolled down. This
issue was fixed by getting the right section div element from the DOM Tree, and reading its
scrollHeight, which takes overflow into account.

5.3 Generating Truth Tables

Figure 4.3 in Section 4.4 described the high-level method for generating truth tables in Issie. Truth
table generation in Issie can be broken down into three broad stages: 1. building the simulation,
2. calculating the input space, and 3. simulating each combination in the input space.

5.3.1 Building the Simulation

As explained in Section 2.6, the process of building a simulation is distinct from the process
of simulating an input combination. The purpose of this stage is to transform the user-entered
sheet (represented by the CanvasState data structure) into SimulationData. In the interest of
consistency for both the user and future developers, as well as ease of maintenance, the truth
table generation code either uses the Step Simulator code, or conforms with its design language.
From the Truth Table tab, users can generate truth tables for the whole sheet, or for a partial
selection of the sheet. When the tab is open, Issie will first check that the logic is combinational,
and then try to build a simulation in the background. The simulation building process for the
whole sheet is identical to that of the Step Simulator: the existing function makeSimData from the
module SimulationView is used. A simulation is built for partial selections of sheets using a newly
written function: makeSimDataSelected. The implementation of this function will be explained
in Section 5.4. The simulations generated for both the whole sheet and partial selection are cached
– this is done to avoid unnecessary rebuilding of the simulation every view cycle. If the simulation
building process returns valid SimulationData, a truth table can be generated. Therefore, the
user is shown a green Generate Truth Table button. If a SimulationError is returned, the button
will be yellow instead and clicking it will display the error message.

5.3.2 Calculating the Input Space

As discussed in Section 4.4, the complete input space of a truth table is made up of all possible
input combinations; the complete left-hand side of an exhaustive truth table. For schematics with
large inputs and/or a large number of inputs, generating the complete input space is impractical.
Instead, Issie only generates a subset of the input space; truth tables are limited to 1024 rows.
This limit is defined as TTBitLimit = 10in the Model, as only 10 bits of input information may
simulated (210 = 1024). If the input space (and therefore the truth table) exceeds this length,
it is truncated. Input constraints are applied prior to truncation to ensure that the rows the
user wants to view are guaranteed to be present in the returned truth table. The limit of 1024
combinations for the input space was obtained by experimentally varying the set TTBitLimit
in the model. Requirement E1.7 states that truth table generation should ideally take under 2
seconds, and at a maximum not more than 4. Other graphical operations in Issie must appear
instantaneous; the time cut-off for this is 100ms. Therefore, the generation and view times for
truth tables were measured for differing bit limits. The results obtained after testing four different
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values are presented in Table 5.4. All measurements were made on a Macbook Air with an M1
CPU, generating a truth table for an 8-bit ALU which had a total input space of 223.

One observation for both categories is that every time the bit limit increases by one, the reported
times double. This indicates that the times are directly proportional to the number of rows in
the truth table, and that table size is the main variable when considering performance in this
scenario. A bit limit of 12 or higher was instantly rejected, as generation time was greater than
2 seconds (not optimal), and view time was almost 200 ms (unacceptable). The high view time
meant that there was noticeable lag during graphical operations on the truth table, as well as
when the dividerbar was dragged. While a bit limit of 11 is acceptable, with average generation
time of 1.4 seconds, Robert Miller [41] stated that response times under 1 second do not lose the
user’s attention. Therefore, if the choice was made to use a bit limit of 11, there would be a risk
of losing the users attention. Additionally, Issie is run on a variety of devices, some which may be
less powerful than the device used during the experiment. Considering that the view function time
of 87ms is close to the 100ms mark, the decision was made to leave some performance headroom
and choose a bit limit of 10, therefore limiting the size of truth tables to 1024 rows.

Bit Limit 9 10 11 12
Avg. Generation Time (ms) 390 702 1432 2819
Avg. View Time (ms 23 45 87 197

Table 5.4: Average Truth Table Generation and View times with varying Bit Limits

First Truncation Method

The first approach taken to truncate the input space involved calculating exactly which input
combinations could be generated, and subsequently only generating those. For each input xi,
three sets are considered: Si representing all of the possible values the xi, Ci representing all
possible values of xi after applying input constraints, and Ai representing how the distinct values
the input could be allowed to have if the size of the Cartesian product was to be less than or
equal to 1024. The sets Si and Ci may be very large, therefore they are never generated. Instead,
their sizes are inferred. The size of Mi can be found by raising the width of xi to the power of
2, while the size of Ci can be found by calculating the sum of the ranges of the constraints on xi.
In the TableInput data structure, the MaxRowCount field corresponds to the size of Mi, and the
ConstrainedRowCount field corresponds to the size of Ci. The size of Ai can then be calculated
by folding a list containing the sizes of C1...Cn. The F# implementation of this is shown in Listing
5.7; the AllowedRowcount field in each TableInput is being populated using the constrained row
counts.

Listing 5.7: Calculating Allowed Row Counts

(1, sortedInputs)
||> List.mapFold (fun rowcount ti ->

let newRowCount = rowcount*ti.ConstrainedRowCount
let capacity = limit/rowcount
// Case where constrained values of this input can be entirely

included
if capacity >= ti.ConstrainedRowCount then

{ti with AllowedRowCount = ti.ConstrainedRowCount},
newRowCount

// Case where constrained values of this input must be
truncated

else if capacity > 1 then
{ti with AllowedRowCount = capacity}, newRowCount

else
{ti with AllowedRowCount = 1}, newRowCount

)
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Second Truncation Method

Following a code review meeting with the Project Owner, it was mentioned that while effective,
the implementation of the first truncation method was not very clear to the reader, and therefore
future developers may find it hard to maintain it. The suggestion was made that an alternative
approach be investigated, preferably using F# Sequences. Sequences in F# , written in code as seq,
are a logical series of elements all of one type. Sequences are particularly useful when working with
a large, ordered collection of data whose elements may not all be used [49]. Sequences implement
a form of Lazy Evaluation, a technique in which the evaluation of expressions is delayed until their
values are required [50]. If Ci has a theoretical size of 4 billion and is stored as a list, all 4 billion
of those elements will have to be generated and stored when the list is defined, causing the program
to freeze. In contrast, as sequences are lazily evaluated, a seq of 4 billion elements can safely be
defined and operated on in a limited manner. Care must be taken to avoid operations which cause
the sequence to be evaluated while it is still very large.

The first step in finding the input space is to separate the numeric and algebraic inputs. If the
truth table is being generated for the first time (i.e. not re-generation), all inputs will be numeric.
For each numeric input xi, is transformed into its constrained set Ci, which is stored as a sequence
to avoid early evaluation. If an input has no constraints applied to it, as it is during first time
generation, Ci is equivalent to all possible values (0..2w−1). When constraints are applied, Ci can
be found by first defining a sequence for the values allowed by each constraint, and then appending
them all together. In the next step, the Cartesian product of sets C1 to Cn is calculated. Finding
the Cartesian product of sequences is a cheap operation because all of the combinations are not
actually evaluated. This is in start contrast to the same operation on lists, which is very expensive.
The resultant sequence represents the whole constrained input space, however it may be too large
to evaluate and must therefore be truncated to 1024 rows. This is done by the Seq.truncate
function, which evaluates and returns the first 1024 elements in the sequence: the truncated
numeric input space. Following this, any algebraic inputs are appended to each row to yield the
complete left-hand side of the truth table.

Comparison of the two methods

The performance of each method was tested by generating a numeric truth table for an 8-bit ALU.
The ALU has 5 inputs: A (8 bits), B (8 bits), F (3 bits), X (3 bits), and CIN (1 bit). The total
number of bits is therefore 23, much greater than the bit limit of 10. This means that the complete
input space comparises 223 = 8, 388, 608 combinations. Six readings were taken for each method,
with the results shown in 5.5. On average, Method 2 is around 3ms faster than Method 1. An
unpaired two-tailed t-test using a 95% confidence interval was performed on the collected data,
and found that this difference was not statistically significant. Furthermore, to the human eye 3ms
is an intangible time difference [41]. Therefore, from a user perspective, the choice of method is
irrelevant.

Method 1 Time (ms) Method 2 Time (ms)
701 697
702 702
712 700
702 697
702 702
703 704
Avg = 703.67 Avg = 700.3

Table 5.5: Time taken by each method to generate a numeric truth table for an 8-bit ALU

However, from a developer perspective, there is a tangible difference between the methods. Under
Method 1, the tableLHS function and the functions it called were a total of 143 lines (including
comments). Additionally, developers would have to understand the TableInput data structure
and the two-stage process of finding the row counts and then generating the input combinations.
In contrast, Method 2 comprises only 86 lines and only uses data structures from the standard F#
Collections library. Requirement E3.3 states that the project should aim to deliver code that is
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easier for future Issie developers to maintain. As a result, Method 2 was chosen over Method 1 for
generating the input space of the truth table.

5.3.3 Simulating each Combination

The input space is represented as a list of TruthTableRows – each row represents an input combi-
nation. Each input combination is simulated using the function changeInputBatch. This function
takes as input a list of changes to be made and mutates the input values in the FastSimulation,
then re-runs the combinational simulation. This causes the output fields in the FastSimulation
to change – these are then extracted and stored in another TruthTableRow. The given input and
output rows are stored in a Map as a pair. The result of the whole process is a F# Map which
contains mappings from inputs to outputs; i.e. a truth table.

5.4 Generating Truth Tables for a partial selection of a Sheet

Issie uses the same underlying three-step process for generating truth tables for partial selections:
building a simulation, calculating the input space, and simulating each input combination. The
only part of the process that is different for partial selections is the simulation building process – the
function makeSimDataSelected does this. The selected CanvasState consists of a list of selected
connections and components. However, in most cases a simulation cannot be built from the selected
CanvasState. This is because it is likely lacking a full set of input/output components, as well as
connections to specific ports. Issie combats this by intelligently correcting the canvas. Following
Canvas Correction, any returned Canvas State is fully compatible with the existing functions
for simulating logic and generating truth tables. Therefore, a Truth Table can be generated for
selected logic through the same methods and functions used for generating Truth Tables for the
whole sheet.

5.4.1 Canvas Correction

Canvas correction needs to be robust and handle as many selection cases as possible, so that the
user does not get frustrated with needless errors when trying to build a truth table for selected
logic. The correction algorithm was quite challenging to write, as all possible selection styles had
to be considered and handled, with correction being implemented for the majority of them. Figure
5.2 shows four common examples of user selections, and the summary of Canvas Correction found
below uses these cases to showcase how the algorithm handles different input. Additionally, Figure
5.3 visually describes what each step in the algorithm does. It should be noted that the images in
Figure 5.3 are for the reader’s understanding only – these individual step views are not shown to
the user.

Step 1 Remove Duplicate Connections: In a given partial selection, a component output port
may have multiple connections connecting it to other components. In the case where the
component in question and the connections are selected, but the other components are not,
there are multiple dangling connections connected to the output port. These connections
would all eventually be connected to a newly created output component, but these outputs
would all have the same value as they would be connected to the same port. Therefore,
connections which do not have both ports in the selection are removed from the selected
CanvasState.

Step 2 Add Extra Connections: Sub-figures 5.2b to 5.2d in Figure 5.2 all show situations where
one or more inputs/outputs for the selected logic are ports on components, rather than
connections. Taking the case shown in Figure 5.2b in particular, the inputs to the selected
logic are: both input ports on G1, and the bottom input port on G2, while the outputs from
the selected logic are both output ports on G1 and G2 respectively. Prior to correction, the
selection canvas does not have any connections going into those ports. This step finds any
ports on selected components which do not have a connection in the selection and connects
them to "dummy" input or output ports depending on their PortType. This transforms the
canvas to a state similar to that seen in Case (a), where all inputs into the selected logic have
connections.
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Step 3 Add Extra IOs: This step adds the "phantom" input and output components to the selec-
tion canvas. The locations where these components need to be inserted are found by checking
which connections in the Canvas State do not have both ports present in the selection. Any
such connections are either connected to some other component in the sheet which is not
selected, or are newly added connections which are connected to dummy ports. Either way,
these are the connections that need to be connected to "phantom" IOs.

Step 3.1 IO Width Inference: When creating new input or output components, the correct
width must be specified. This is calculated by running Issie’s WidthInferrer on the
whole sheet to find the expected width of the input or output. However, in cases such
as the one shown in Figure 5.2d, where there are no connections to/from some ports on
G3, WidthInferrer will fail to infer widths. In this case, the port width is inferred from
the host component; all logic gates ports in Issie have a width of 1. Component-based
width inference is implemented for:

∗ All Logic Gates

∗ Inputs, Outputs, and Constants

∗ Bus Select and Bus Compare

∗ N-bits Adder and N-bits Xor

∗ IOLabels, if they are connected to a component who’s port width has been inferred

Step 3.2 IO Label Inference: Usually users provide labels for IOs, which are used in the Truth
Table. However, when IOs are automatically created, names for them must be auto-
matically generated too. This is done by looking at which ports in the selection they
are connected to. If the port is labelled (e.g. on a multiplexer or a Custom Component)
the expression for an automatically generated IO Label is: [Connected Component
Label]_[Port Label]. Alternatively it is [Connected Component Label]_[IN/OUT][Port
Number].

Step 4 Returning a Canvas or an Error: If any errors were found in the previous steps, most
likely due to a malformed selection, they are returned. If not, then the returned Canvas State
is completely compatible with the existing simulation and truth table generation functions.
Possible reasons for returning an error are:

– No Components, only Connections are selected

– Selected logic contains a wire connected to no components

– There is a legitimate error in the selected logic

– Width for an input or output into the selected logic could not be inferred by WidthInferrer
or from host components

5.4.2 Caching Strategy
The function makeSimDataSelected is called in every iteration of the View function, as its return
value (either a successfully built simulation or SimulationError) is used to determine the colour,
text and action of the generation button for partial selections. Repeatedly correcting the selected
canvas on every call is wasteful if the selection has not changed, the result of the process is cached
and re-used so long as the selected canvas state has not changed. The type definition for this cache
can be found in Listing 5.8. When makeSimDataSelected is called, the selected Canvas State
is reduced and compared to the UncorrectedCanvas field in the cache. If they are equal, this
indicates the selection has not changed, so the corrected canvas and stored simulation result from
the last call can be returned. If the selection has changed, then the selected canvas is corrected,
and the cache is updated with the latest results.

Listing 5.8: Type Definition of Cache for selected logic

type SelectionCache = {
UncorrectedCanvas: CanvasState
CorrectedCanvas: CanvasState
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StoredResult: Result <SimulationData , SimulationError >
}

(a) Case where all inputs into selected logic are con-
nections.

(b) Case where some inputs into selected logic are
connections, and some are ports on components.

(c) Case where selected logic includes an input com-
ponent.

(d) Case where a selected component does not have
connections to all ports

Figure 5.2: Selection Cases

Initial Selected Canvas After Duplicate Connection Removal

Note how the second dangling connection

connected to the output port of G1 has been
removed.

After Adding Extra Connections

Note how the input port of G1 now has a

dangling connection.

After Adding Extra IOs

IOs with correct width and informative labels

have been added to each dangling
connection, resulting in a corrected Canvas

which can be simulated.

Figure 5.3: Representation of the Canvas at different stages of Canvas Correction

5.5 Filtering with Output Constraints

While input constraints are applied when generating the input space for performance reasons,
output constraints are applied to the generated truth table. This is done for performance reasons;
it is quicker to iterate through an existing truth table and filter specific rows compared to re-
generating the whole table and only including rows which match the constraints. All output
constraints (equality and inequality) are placed in a list, this list is passed to List.fold, along
with the truth table (Map<TruthTableRow,TruthTableRow>, which is the initial state. Each call
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Finish

Figure 5.4: Method for Filtering the Truth Table with Output Constraints

of the folder function applies the next output constraint to the Map, which shrinks with every
iteration. Figure 5.4 shows a visual description of this process.

5.6 Don’t Care Reduction

Truth table reduction using Don’t Care terms is implemented using a recursive algorithm which
attempts to keep reducing the truth table until there are no redundancies in the table. A recursive
function is used as a single row may contain multiple Don’t Care terms, meaning that redundancies
may still exist in the truth table after a single round of reduction. As discussed in Sections 2.3.1
and 4.9, Don’t Care reduction in Issie differs from similar logic minimisation techniques as columns
in truth tables can have multi-bit values instead of purely zeros and ones. Issie focuses on teaching
digital design principles, therefore on displaying relationships in the logic is more important than
achieving the most minimal implementation. All functions related to the reduction of truth tables
can be found in the file TruthTableReduce.fs. Due to the complex nature of the recursive function,
it would be impractical to reduce very large tables. Therefore, only non truncated tables can be
reduced using Don’t Cares. Larger schematics ought to be reduced algebraically.

An example of Don’t Care Reduction in action is shown in Figure 5.5. Figure 5.5a shows a
schematic in which the Issie component Mux4 takes 4 2-bit inputs into its data lines, and a 2-bit
input into it’s select line. The full numeric truth table for this schematic has 1024 rows. Applying
the algorithm to the table yields a table (5.5b) with only 16 rows: a reduction of over 98%. Rows
in this table have multiple DC terms.
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(a) Mux4 Schematic (b) Reduced Truth Table for the schematic

Figure 5.5: Schematic and Reduced Truth Table

5.6.1 Prerequisite Concepts
Prior to explaining the reduction algorithm, certain key concepts regarding truth tables are covered.
A DC row is defined as a row that contains Don’t Care terms.

Row Equality Truth Table Rows are simply lists of cells, and these lists are compared element-
wise to check for row equality. A cell is equal to another cell if they have the same IO and Data
values. However, if either of the cells have a Don’t Care term, the cells are considered to be
equivalent as a Don’t Care term can be equal to any value. Two rows can be compared using the
rowEquals function.

Looking up Rows in the Truth Table The truth table is implemented as a Map data struc-
ture, and therefore has efficient lookups. However, the exisiting Map.tryFind function uses default
F# equality checking when performing lookups. In order to support DC rows, the equality func-
tion rowEquals should be used. The function tableTryFind works like Map.tryFind, but supports
querying the table with Don’t Care terms in rows. As a Don’t Care term represents multiple values,
one row can map to multiple rows. Therefore, tableTryFind returns a list of all output rows that
match the input row.

Validity of a Row with Don’t Cares Within a truth table, a row containing Don’t Care terms
is considered valid if the relationship it describes is correct – i.e. is the variable actually redundant
in the given input combination. This is tested by finding all output rows that correspond to the
input DC row using tableTryFind. If all of the returned output rows are equal, then the DC row
is valid. If not, then it is invalid.

5.6.2 Reduction Algorithm
The algorithm takes an instance of the Truth Table data structure as input, and returns a new
instance of the data structure, this time with the DCMap field populated with a Map. As the
algorithm is called recursively on the input data structure, the algorithm first checks if a DCMap
exists. If it does not, then this is the first call and therefore the numeric TableMap is used. If the
field is populated, then this is a subsequent reduction of the DCMap, so it is used. Following this,
the algorithm can be split into three stages:

Stage 1: Find all valid Don’t Care Rows

Listing 5.9: Finding all DC Rows

let allDCRows =
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table.Inputs
|> List.collect (fun input ->

inputDCRows input inputConstraints table bitLimit)

The function inputDCRows finds all DC rows for a given input. This function is called for each
input, and the returned rows are all collected. inputDCRows first generates all possible DC rows for
the input by replacing any numerical values of the given input in the table with a Don’t Care term.
These possibilities are then validated against the truth table using the function isValidDCRow, with
invalid rows being discarded from the list. This leaves only valid DC rows.

Stage 2: Find which rows from the Truth Table should remain

Listing 5.10: Finding which regular rows should remain in the Truth Table

let remainingRegularRows =
(Map.toList tMap , allDCRows)
||> List.fold reduceWithDCRow

Once all valid DC rows are found, these rows are used to reduce the existing table. The process
of reducing the table using DC rows is similar to the process of filtering the table using output
constraints. Every row in the truth table is compared to every valid DC row using rowEquals. If
a row in the existing truth table is equal to a DC Row, it means that it is redundant in the table
and should be removed. This process returns a list of the rows from the existing truth table that
were not made redundant by the DC rows and should therefore remain in the truth table.

Stage 3: Assembling the Reduced Table and Recursive call

By combining the DC rows and remaining regular rows, the reduced truth table for this round of
reduction can be obtained. However, one round of reduction can only add one Don’t Care term
to each row. However, certain truth tables may require multiple DC terms in each row to be
fully reduced – Figure5.5b is an advantage of this. Therefore, the reduction algorithm is called
recursively on the reduced truth table. This chain of recursive calls continues until the reduced
tables generated by two successive rounds are found to be equal, as this indicates that the table
can be reduced no further. This fully reduced table is returned to the user for viewing.
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5.7 Algebraic Truth Tables

Once a truth table has been generated, the user can reduce the number of rows in the table by
changing inputs from numerical values to algebraic expressions. Section 5.1.3 discussed in detail the
nature of algebraic operators and expressions in Issie, while Table 5.7 in the Analysis and Design
chapter explained what every operator the user may encounter means. Algebraic truth tables are
obtained through Algebraic Simulation; specific inputs selected by the user are fed to the underlying
Fast Simulation as SingleTerm algebraic expressions, and these expressions propagate through the
simulation and are manipulated by operators. The outputs of the simulation are therefore also
algebraic expressions, which summarise the output in terms of the input.

5.7.1 Definition of the Algebraic System
A new system of algebra was created by this project for use in algebraic truth tables in Issie.
The aim of the algebra is to clearly communicate the semantic meaning of the combinational
logic function described by the schematic. These functions are traditionally defined using Boolean
algebra, but this system was deemed unfit for use in algebraic truth tables. Simplified Boolean
algebra can describe which operations are being performed on the inputs at a hardware level, but
lacks a way to succinctly describe more advanced operations which consist of multiple regular
Boolean operations. Arithmetic operations are an example of this. While Issie supports multi-bit
inputs and wire buses in logic, traditional Boolean algebra assumes all input variables have a width
of 1. Therefore it does not include operators for manipulating buses such as slicing or merging. Due
to these reasons, the decision was made to define a new formal language (algebra) which would be
a superset of Boolean algebra, adding support for arithmetic and multi-bit bus operations. Formal
languages are a set of sequences, or strings over some finite vocabulary , defined using a grammar.
A formal grammar is defined as a quadruple ⟨Σ, NT, S,R⟩, where Σ represents terminal symbols,
NT represents non-terminal symbols, S represents a start symbol, and R is a set of production
rules which recursively transform non-terminals into terminals [51]. In 1956, Noam Chomsky [52]
defined four types of grammars, which are arranged in a hierarchy. These can be summarised
as:

Unerestricted Grammars (Type 0): Set of all language grammars that computably enu-
merable; i.e. can be recognised by a turing machine.

Context-Sensitive Grammars (Type 1): Language grammars where the left-hand side of
a production rule can contain multiple non-terminal and terminal symbols.

Context-Free Grammars (Type 2): Language grammars where the left-hand side of every
production rule contains only one non-terminal.

Regular Grammars (Type 3): Grammars which can be processed by state machines, where
each non-terminal can be considered as a ’state’, and production rules are essentially state
transition rules.

Each type in the hierarchy is a subset of the previous type; so for example all Type 3 grammars can
be described with a Type 2 grammar, which can be described by a Type 1 and so forth. The algebra
was initially defined as a context-free grammar, with each component in the schematic generating
a single expression at each of its output ports from expressions at its input ports by applying
production rules. This yielded an algebra which accurately described each transformation applied
to the inputs. However, this algebra lacked any form of intelligent simplification: ways in which
a generated expression could be reduced down to its most concise or informative representation.
This was addressed by augmenting the set of production rules with reduction rules, which in
turn led to the defined grammar becoming context-sensitive.

Note: The F# implementation of the algebra differs slightly in some places from the more formal
definition described below to allow for easier comprehension and simplification. The F# type
definitions are described in Section 5.1.3.

Terminal Symbols

A terminal symbol is the simplest constituent of an algebraic expression, which cannot be sub-
divided or simplified further. In the defined algebra, terminal symbols can be split into two
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categories. The first category represents the base value type which operations can be performed
on. There are two terminal value types in the algebra; these are described in Table 5.6. The second
category consists of the operators which manipulate expressions. These are described in Table 5.7.
A key difference between this formal definition and the underlying implementation is the Append
Operator. From the perspective of the user who will read the algebra/language, a binary operator
which joins two expressions does exist. However, to aid easier reduction, in the F# implementation
appened expressions are stored in a list of expressions, which is itself defined as an expression.

Symbol Name in Code Explanation

Variable SingleTerm
A symbol representing an algebraic input into the simula-
tion. Any valid IO Label string can be a variable.

Number DataLiteral
A known numerical value in the simulation. Used to repre-
sent numerical inputs into the simulation.

Table 5.6: Terminal Value Symbols

Symbol Name in Code Explanation

Numeric Addition: + AddOp
Binary operator which represents mathematical
addition of its two operands.

Numeric Subtraction: − SubOp
Binary operator which represents mathematical
subtraction of its right operand from its left
operand.

Bitwise And: & BitAndOp
Binary operator which for a Boolean And between
each bit of its operands (bitwise) .

Bitwise Or: | BitOrOp
Binary operator which for a Boolean Or between
each bit of its operands (bitwise)

Bitwise Xor:
⊕

BitXorOp
Binary operator which for a Boolean Xor between
each bit of its operands (bitwise)

Numeric Negation: − NegOp
Unary negation operator, indicates that the single
operand will have its sign inverted

Bitwise Not: ∼ NotOp
Unary bitwise Not operator, indicates that all bits
of the single operand will be inverted

Carry Of: carry() CarryOfOp

Unary operator which signifies that the result is
the single-bit carry-out from an arithmetic ex-
pression. This expression is the operand, which
is situated in the parentheses.

Bit Range: [u : l] BitRangeOp

Unary operator with two parameters: an up-
per and lower bound. Indicates that a specified
range of bits (inclusive) will be selected from the
operand.

Equals: == Equals
Logical operator which checks for equivalence be-
tween some algebraic expression and a numeric
value.

Append: :: Not in Code

Binary operator which joins the bits of the two
input operands into one result whose width is the
sum of the input widths. The left operand bits be-
come the MSBs, right operand bits become LSBs.

Table 5.7: Terminal Operator Symbols

Non-Terminal Symbols and Start Symbol

Non-terminal symbols are constructs that appear within algebraic expressions which, through the
application of defined rules, can eventually be simplified/replaced with terminal symbols. In the
F# implementation, arithmetic and boolean operators are not defined, as they are subsets of all
binary operators. Grammars will generally build up into a tree-like structure, with the terminal
symbols as its leaves and non-terminals as intermediate nodes in the tree. The root of this tree is
known as the start symbol. In a formal grammar, it should be possible to arrive at a sequence
of terminal symbols by repeatedly and/or recursively applying the defined production rules to the
start symbol. In the case of the defined algebra, the start symbol is the expression.
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Symbol Name In Code Explanation

Binary Operator BinaryOp
Defines all binary operators (operators which
take two operands) and can be substituted by
any.

Unary Operator UnaryOp
Defines all unary operators (operators which
take one operand) and can be substituted by
any.

Arithmetic Operator Not in Code Defines all operators involved in mathematics.
Boolean Operator Not in Code Defines all operators from Boolean algebra.

Binary Expression BinaryExp
Defines an expression in which a binary oper-
ator acts on its operands.

Unary Expression UnaryExp
Defines an expression in which a unary oper-
ator acts on its operands.

Comparison Expression ComparisonExp
Defines an expression in which a comparison
operator compares a symbol with a value

Expression FastAlgExp
Highest level non-terminal symbol (start
symbol), defines all expressions in the sim-
ulation.

Table 5.8: Non-Terminal Symbols

Production Rules

Generally, production rules in grammars have the form α → β, understood as α may be replaced
by β, where α and β are sequences comprising symbols from the terminal and non-terminal set of
symbols [51]. In context-free grammars, α represents only one non-terminal symbol. Production
rules can be described in Backus-Naur Form (BNF); this is a format for presenting grammars
often used when defining programming languages. In BNF, non-terminal symbols, which are
called metalinguistic variables are enclosed in brackets to differentiate them from terminal symbols.
The symbol ::= indicates metalingustic equivalence: whatever is to the left of the symbol can be
substituted by whatever is to the right. The symbol | implies a choice of equivalences (akin to a
logical OR) – i.e. something can be substituted by option 1 or option 2. Finally, concatenation of
symbols (linking) is achieved by placing them next to one another [53].

The production rules for the algebra, defined in BNF are:

⟨unary operator⟩ ::= -
| ∼
| carry()
| [u:l]

⟨arithmetic operator⟩ ::= +
| -

⟨boolean operator⟩ ::= &
| |
|

⊕
⟨binary operator⟩ ::= ⟨arithmetic operator⟩

| ⟨boolean operator⟩
| ::

⟨comparison operator⟩ ::= ==

⟨binary expression⟩ ::= ⟨expression⟩ ⟨binary operator⟩ ⟨expression⟩

⟨unary expression⟩ ::= ⟨unary operator⟩ ⟨expression⟩

⟨comparison expression⟩ ::= ⟨expression⟩ ⟨comparison operator⟩ number

⟨expression⟩ ::= variable
| number
| ⟨binary expression⟩
| ⟨unary expression⟩
| ⟨comparison expression⟩
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5.7.2 Reduction Rules

Production rules whose left-hand sides consist of multiple symbols are a part of context-sensitive
grammars. The introduction of these rules allows for specific cases to be reduced into equivalent
representations which are more informative and concise. Some of these reductions are purely
syntactical; one arrangement of symbols can be simplified into another. However, other reduction
rules are contingent on the underlying values of specific symbols, or equivalence between the values
of symbols. In these situations, the conditions under which the reduction rule can be applied are
described underneath the rule.

Catching Double Negation and Inversion

Double negation and inversion cancel out – applying the negation or inversion operator twice to
an expression simply returns the initial expression

˙- - ⟨expression⟩ ::= ⟨expression⟩

˙∼ ∼ ⟨expression⟩ ::= ⟨expression⟩

Arithmetic Interpretation of Xor and Not

The Xor (bitwise check for exclusivity) and Not (bitwise inversion) operations have alternative
interpretations in arithmetic. Xor can be interpreted as addition, meaning that the transformation
A
⊕

B → A + B should be applied. Performing a bitwise Not to invert the bits of a number is
the first step in 2’s complement negation, with the second step being to add 1. Therefore, when
a bit inversion of an expression is used in arithmetic operations, it should be interpreted as the
negative of the expression, minus one. This yields the transformation: A+ ∼ B → A+ (−B − 1).
The transformed value can then be simplified into A−B − 1.

˙⟨expression⟩
⊕
⟨expression⟩ ::= ⟨expression⟩ ⟨expression⟩

˙⟨expression⟩ + (∼ ⟨expression⟩) ::= ⟨expression⟩ + (- ⟨expression⟩ - 1)

Merging Bit Ranges on Append

Figure 5.6: Splitting and Merging

Issie supports splitting multi-bit inputs into separate buses, as well as merging buses together in
resultant wider bus. This is achieved through the MergeWires and SplitWire components. When
an expression is split, the unary Bit Range operator is applied to the expression – this operator
itself features two parameters: the upper and lower bound of the range. When expressions are
joined (appended) together, the append operator performs the join. Figure 5.6 shows a circuit
which splits a 4-bit input, and then immediately joins the two halves back together. Under naive
algebraic simulation the output would yield the following expression:

A[3 : 2] :: A[1 : 0] (5.3)

However, this is simply equivalent to the initial input expression A. This pattern, where unary ex-
pressions consisting of adjacent bit ranges applied to the same underlying expression are appended,
is recognised and reduced appropriately. This rule can be defined in general as:

⟨expression⟩ [u1:l1]) :: (⟨expression⟩ [u2:l2]) ::= ⟨expression⟩ [u1:l2]

˙if both instances of <expression> are equal and if l1 = u2 + 1
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Figure 5.7: Circuit for Bitwise And

An example of how well the rule generalises is also provided below, with the following case being
caught and reduced as shown. For context, the variables A and B represent inputs which are each
8 bits wide.

(A+B)[7 : 6] :: (A+B)[5 : 4] :: (A+B)[3 : 1]→ (A+B)[7 : 1] (5.4)

Recognising Bitwise Operations

While Issie allows multi-bit inputs, as of the time of writing it does not feature any library com-
ponents for performing bitwise Boolean operations. Therefore, users must manually split both
multi-bit buses into their constituent bits using SplitWire components, perform the Boolean oper-
ation on each pair of bits, and assemble the results in order again using MergeWires components.
Figure 5.7 shows the schematic that must be built to calculate the bitwise And between two 4-bit
inputs A and B. The left-hand side of expression 5.5 is what would initially be produced under
simulation: the constituent bits of each input being operated on and the results being appended
together. The right-hand side is the result of applying the reduction rule: correct recognition of
the bitwise operation on expressions A and B.

(A[3]&B[3]) :: (A[2]&B[2]) :: (A[1]&B[1]) :: (A[0]&B[0])→ A&B (5.5)

In order for this simplification to take place, successive nested binary append operators must be
flattened into a list for analysis to take place. This step is unnecessary in the F# implementation as
appended expressions are already stored as a list. In the current formal system, a list of appended
expressions can be defined. There is no need for an empty list terminal, as it is impossible to
append nothing.

⟨expression list⟩ ::= ⟨expression⟩
| ⟨expression⟩ :: ⟨expression list⟩

Using the above definition of an expression list, the following binary expression: ⟨expression⟩::⟨expression⟩,
where either constituent expression may be of the same form (i.e. nested appends), can be ex-
panded into a flat ordered list of expressions that are to be appended to one another. This list
can be analysed to detect bitwise operations on expressions. The reduction rule for this case is
described below.

(⟨expression⟩ [u1:l1]) ⟨boolean operator⟩ (⟨expression⟩ [u1:l1])) :: ((⟨expression⟩ [u2:l2])
⟨boolean operator⟩ (⟨expression⟩ [u2:l2])) :: ((⟨expression⟩ [u3:l3]) ⟨boolean operator⟩ (⟨expression⟩
[u3:l3])) ::= ⟨expression⟩ ⟨boolean operator⟩ ⟨expression⟩

˙if all instances of <expression> are equal and if ui equals li

˙and if u0..n−1 are successive, with the expression having width n
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Boolean Simplification Rules

In Boolean algebra, there exist certain identities which allow for the simplification of Boolean
expressions. These are described in Figure 5.8. These simplification rules have been implemented
in the algebraic system as reduction rules; the letters A,B, and C represent any valid algebraic
expression, while numbers 0 and 1 represent LOW and HIGH values rather than the actual values
of 0 and 1. This distinction is important as numerical values in Issie can have widths greater
than one. For example, Rules 3 and 4 for 8-bit algebraic variables would be: A&0x00 = 0x00
and A&0xFF = 0xFF respectively. Rule 9 (double inversion) has already been described. It
should be noted that the symbol "+" in Figure 5.8 means OR rather than addition, and the dot
means AND. For rules involving commutative operations, the alternate case is also covered in the
implementation. For example, A&0 and 0A will both evaluate to 0 under Rule 3.

Figure 5.8: Boolean Algebra Identities [54]

In addition to the above rules, expressions which involve performing XOR with either LOW or
HIGH values are also reduced. The cases for reduction are shown below; A represents any valid
algebraic expression.

A⊕ 0 = A

A⊕ 1 =∼ A

Arithmetic Expression Simplification

While arithmetic expressions are not strictly defined in the algebra, with the more generic binary
expressions being used, a possible definition of an arithmetic expression is shown below. This is
the same definition as the one used for a binary expression, with the exception of a tighter set of
operators being used.

⟨arithmetic expression⟩ ::= ⟨expression⟩ ⟨arithmetic operator⟩ ⟨expression⟩

As arithmetic expressions are themselves a type of expression, there is the possibility that other
arithmetic expressions may be nested within an arithmetic expression. An example of this is shown
on the left-hand side of expression 5.6, where numerous arithmetic equations have been nested.
The issue with this nesting is that the arithmetic is not in its simplest form, which is shown on
the right-hand side. B and −B should cancel out, and the two numbers in the expression should
be combined into one.

((A+B)− (((B + 1) + C)− 2))→ ((A− C) + 1) (5.6)

This process of arithmetic simplification has multiple steps. First, the structure of nested arithmetic
expressions is recursively flattened into a list of arithmetic terms. These arithmetic terms in this
flattened list are of the form ⟨expression⟩ if they are positive and ⟨−expression⟩ if they are
negative. Algorithm 1 explains how nested arithmetic can be flattened. The flattening algorithm
is recursively called on the left and right operands of arithmetic expressions to produce a list.
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If the operator is subtraction, the values of the right list are negated element-wise. The two
resultant lists are joined. Additionally, if a bit-inversion (∼ A) is recognised, it is converted into
the arithmetically equivalent expression −1 − A; this expression is then flattened further in case
A itself is an arithmetic expression. If the expression matches none of these cases, then it is at its
flattest, and is therefore returned in a list by itself.

Applying the described flattening process to 5.6, results in the list of expressions on the left-hand
side of expression 5.7. Matching pairs of positive and negative expressions and combining numerical
values yields the list on the right-hand side. The expressions in this simplified list can then be
re-assembled into binary arithmetic expressions.

[A,B,−B,−1,−C,+2]→ [A,−C, 1] (5.7)

Algorithm 1 Algorithm for Flattening Nested Arithmetic

procedure Flatten(expression)
if expression of form (expression1 + expression2) then

left← Flatten(expression1)
right← Flatten(expression2)
return Append(left, right)

else if expression of form (expression1− expression2) then
left← Flatten(expression1)
rtemp← Flatten(expression2)
right← NegateList(rtemp)
return Append(left, right)

else if expression of form ∼ innerexp then
return
return Flatten(−1− innerexp)

else
return [expression]

end if
end procedure
procedure NegateList(listOfExp)

for expression in listOfExp do
if expression of form (−innerexp) then

listOfExp[i]← innerexp
else

listOfExp[i]← expression
end if

end for
return listOfExp

end procedure

Full Adder Detection

In complex Issie designs, which often involve working with multi-bit buses of varying widths,
most arithmetic operations in logic will be implemented using the N-bits Adder component. This
component has three input ports: A, B, and Cin; and two output ports: SUM and COUT. The
SUM port outputs the sum of the three inputs, while the COUT port outputs the carry-out of the
addition. This arithmetic can be described by the Addition operator and the CarryOf operator.
However, users can also create their own full adder component; this is a 1-bit adder. As this is
implemented purely with logic gates, the addition and carry operators cannot be generated during
the production phase. They must instead be inferred in the reduction phase. The schematic for a
full adder is shown in Figure 5.9b; full adders are built by combining two half adders (Figure 5.9a).
The sum of a full adder is simply A⊕B⊕Cin; XOR is therefore reduced to addition. Inferring the
Carry is slightly more challenging. The carry-out from a half adder is simply A&B – this is too
general of an expression to reduce to carry(A+B). Doing so would result in multiple false-positives
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(a) Half Adder Circuit (b) Full Adder Circuit

Figure 5.9: Adder Circuits

for carry detection. However, the carry-out from a full adder is slightly more complex, therefore a
reduction rule for it can be written. Two reduction rules are required for recognising full adders,
one for the sum and one for the carry:

A⊕B → A+B (5.8)

(C&(A+B))|(A&B)→ carry(A+B + C) (5.9)

5.7.3 Implementing Algebra
In order to enable algebraic simulation, the Fast Simulation code was extended by the project to
support algebraic inputs and reduction. Prior to the addition of algebra, the primary data type
used to represent values in the Fast Simulation was FastData, a record type containing a value
and its width. FastData was wrapped in the type FData; the code in the Fast Simulation used the
FData type in the implementation. This was done to make the logic easier to extend, as if the logic
ever had to handle two types of data FData could simply be transformed in to a Discriminated
Union of the usable types. This is an example of Extensibility, one of Issie’s core principles, in
action. The approach of turning FData into a DU type was adopted by the project – the change in
the type definition can be seen in Listing 5.11. FData, the data type used in all simulation logic,
can either be numeric data (as it was before), or an algebraic expression. Following this change
in definition, an extensive refactoring process had to take place to fix over 100 compiler errors
caused by functions expecting to be given data resembling FastData as input, but actually given
a discriminated union. Only after this exercise was completed, could the true implementation of
algebraic simulation begin.

Listing 5.11: Change in definition of FData

// Old Definition
type FData = FastData

// New Definition
type FData = | Data of FastData | Alg of FastAlgExp

When the Fast Simulation is built, all components in the schematic are placed in a specific order
which allows them to be reduced. This reduction process involves propagating values from the
input ports of a component to its output ports, which are propagated to the input ports of the next
component in line. This is repeated until the end of the list is reached. The function responsible
for propagating these values is fastReduce. It consists of a large Pattern Match expression,
with defined behaviour for how each component transforms its input values into output values.
Previously, the values at the input ports could only be FastData, however after the change in
definition they could also be algebraic expressions. Therefore, the defined behaviour for every
component specified in fastReduce had to be extended to accommodate algebra.

Algebraic simulation consists of two stages. The first is the production stage, where a complex
algebraic expression is produced by the fastReduce function. Each algebraic input into the over-
all logic is represented as a single variable (SingleTerm). As mentioned previously, fastReduce
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defines a mapping from the expressions at the input ports of a component to expressions/data at
its output ports. These output expressions are then propagated to the input ports of the next con-
nected component. Figure 5.10 is an annotated schematic which shows how algebraic expressions
propagate through components, growing in complexity as they pass through each component. At
the completion of the production stage, every output of the simulation has an algebraic expression
associated with it. While behaviour has been defined for all combinational components, algebra
is not supported at select (SEL) ports of multiplexers, demultiplexers, and decoders. This is by
design; as the algebraic expressions resulting from algebra at a SEL port would be long, unwieldy,
and would not provide much insight into what the component actually does. Furthermore, inputs
into SEL ports are often control signals for circuit behaviour, and therefore different cases ought to
be separated out in the truth table. In these cases, an AlgebraNotImplemented exception, which
contains a SimulationError explaining why algebraic simulation cannot take place is raised. Once
caught, this exception is handled by showing the simulation error to the user. When the user des-
ignates an input as algebraic in the popup window, one case with the given input set as algebraic
is simulated. If that simulation raises an exception, the user is prevented from applying that set
of algebraic inputs. Table 5.9 summarises the mappings for algebra defined fastReduce which
produce expressions at output ports.

Figure 5.10: Annotated Schematic showing propagation of Algebra

The second stage is the reduction stage. In this stage, the expressions associated with the
simulation outputs are recursively reduced using the reduction rules defined in Section 5.7.2. This
is achieved by a recursive pattern match on the expression to be simplified – this pattern match
is implemented in the function evalExp. In the example presented in Figure 5.10, the result of
the production stage at the one output node of the simulation was (A|B)&(A|C). The reduction
stage matches this expression against Boolean Simplification Rule 9 in Figure 5.8, and reduces it
to A|(B&C). The specific case in the pattern match in evalExp which applies this reduction rule
is shown in Listing 5.12.

Listing 5.12: Case in pattern match which implements the reduction rule for Boolean Simplification
Rule 9

// (A OR B) AND (A OR C) = A OR (B AND C)
| BinaryExp(e1,BitOrOp ,e2), BinaryExp(e3,BitOrOp ,e4) ->

if e1 = e3 then
BinaryExp(e1,BitOrOp ,BinaryExp(e2,BitAndOp ,e4))

else if e1 = e4 then
BinaryExp(e1,BitOrOp ,BinaryExp(e2,BitAndOp ,e3))

else if e2 = e3 then
BinaryExp(e2,BitOrOp ,BinaryExp(e1,BitAndOp ,e4))

else if e2 = e4 then
BinaryExp(e2,BitOrOp ,BinaryExp(e1,BitAndOp ,e3))

else
BinaryExp (left ,BitAndOp ,right)
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Component Case Defined Behaviour

Not - Apply the unary Not operator to the algebraic ex-
pression.

BusSelection - Apply the unary BitRange operator to the expression
based on width and LSB supplied.

BusCompare - Apply the comparison operator to the expression,
comparing it to the supplied value.

And, Or,
Xor - Apply the relavent binary operator to both expres-

sions

Nand, Nor,
Xnor -

Apply the binary operator for the uninverted ver-
sions of the gates, and then apply the unary Not
operator to the result.

Mux2, Mux4
Mux8

Data inputs are algebra or
numeric, Select input is
numeric

If the select input is 0, propagate the expres-
sion/number connected to port 0. If select input is 1,
propogate the expression/number connected to port
1 and so on. . .

Select input is algebra Algebra not allowed at select port of multiplexer.
Raise AlgebraNotImplemented exception.

Demux2,
Demux4,
Demux8

Data input is algebra or
numeric, Select input is
numeric

Propagate the expression/value to the correct output
corresponding to the Select value.

Select input is algebra Algebra not allowed at select port of demultiplexer.
Raise AlgebraNotImplemented exception.

Decode4

Data input is algebra or
numeric, Select input is
numeric

Propagate the expression/value to the correct output
corresponding to the Select value.

Select input is algebra Algebra not allowed at select port of decoder. Raise
AlgebraNotImplemented exception.

NbitsAdder -
Apply the binary Add operator to two inputs, and
then apply a second Add operator to the first expres-
sion and the third input.

NbitsXor
One input is algebra, the
other is -1.

This is bit inversion, apply the unary Not operator
to the input.

- Xor on multi-bit inputs is usually interpreted as addi-
tion, so apply the Add operator to the two operands.

SplitWire

Input is an algebraic ex-
pression with a BitRange
operator

Change the values in the bit range operator accord-
ing to which bits are going to output ports 0 and 1.

Input is an algebraic
expression with a Not
opeartor

Apply the BitRange operator to the expression inside
the Not operator, as bit ranges bind closer.

- Apply the unary BitRange operator to the expres-
sion, with different ranges for output ports 0 and 1.

MergeWires

Both inputs are append
expressions (a list of ap-
pened expressions)

Join the two lists in the correct order, and then check
if any BitRanges can be joined.

One of the inputs is an ap-
pend expression

Add the new element to the head or tail of the list
depending on the order, and then check if any Bi-
tRanges can be merged.

- Put the two inputs in a list together in the correct
order, and check if any BitRanges can be merged.

Any other
components -

These are sequential components which should never
receive, nor accept algebra, raise an AlgebraNotIm-
plemented exception.

Table 5.9: New additions to the defined behaviour for each component in fastReduce

Implementation of Arithmetic Simplification

Arithmetic simplification is one of the most important reduction rules in the algebraic system. Not
only does it remove redundant expressions and numeric values from the output expression, but
it also converts bit inversions into subtractions. The first step of arithmetic simplification is the
flattening of nested arithmetic into a list of expressions. The algorithm for this was described in
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Algorithm 1, and is implemented in the F# function flattenNestedArithmetic. The next step
is to remove redundancies in the list; this includes cancelling out positive and negative instances
of expressions and collecting numeric terms. This is achieved by folding the list of expressions
using two states. The first state is an integer; this is used to collect numeric values. If a positive
number is encountered in the list, the number is added to the running state. If a negative number
is encountered, its value is subtracted from the running state. The second state is an expression
counter, implemented as a Map<FastAlgExp,int>. When an expression is encountered in the list,
its value in the Map is incremented. If the negative version of the expression is encountered, its
value in the Map is decremented. At the conclusion of the List.fold, the first state represents
the final numeric value, while the second state contains the coefficient for each expression in the
list. This information is then reassembled into a simplified arithmetic expression. Figure 5.11
summarises the arithmetic simplification process using an example, showing the value of specific
data structures at different points in the process.

Initial Nested

Arithmetic

Expression

(((A+B) + (C + ~B)) - (C+3))

flattenNestedArithmetic

Flat List[A; B; C; -B; -1; -C; 3]

List.FoldInitial State:

(0, Map<FastAlgExp,int>)

Final State2, {A:1; B:0; C:0;}

Reassemble
Arithmetic

Reduced

Arithmetic

Expression

(A + 2)

Figure 5.11: Process for Arithmetic Simplification with Example

5.8 Sorting Truth Tables

In Issie, the order in which rows appear in the truth table can be set by the user by clicking
the up/down arrows in the heading of each column of the table. The initial order of the rows
in the truth table is seemingly arbitrary; this is because truth tables are generated as F# Maps,
and the order of the keys in the Map is determined by F# ’s generic comparison [48]. As Maps
cannot retain a custom set order, a different collection type had to used for sorting the truth table.
Therefore, the Map is converted row-wise into a list of TruthTableRows, where each individual
TruthTableRow is formed by appending each input row to its corresponding output row. This list
representation is the last stage in the truth table caching strategy, which will be discussed further
in Section 5.9.

When the user clicks a specific arrow in the truth table to sort it, two messages are sent to the
Update function. The first message, SetTTSortType, contains two pieces of information: which
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IO should the table be sorted by, and whether this is in ascending or descending order. This
information is updated in the Model (under field TTSortType) . The second message marks the
truth table as being out of date, with the reason that it must be sorted. The reason for why the
setting of the sort type is separated from actual sorting of the truth table is explained in detail in
5.9. The actual sorting process begins by looking up the current Sort Type in the model – if there is
some then the truth table is sorted according to it. F# provides library functions for sorting lists in
O(nlog(n)) time using QuickSort; one such function is List.sortWith, which allows the developer
to define a custom comparison function for two elements in the list. A custom comparison function
for comparing two TruthTableRows is required, as the generic comparison offered by F# does not
compare rows correctly. When the truth table is being sorted by some IO X, the position of a
given row in the sorted truth table is dependent on the value of X in that row. Therefore, it
was determined that the process of comparing two rows involved first extracting the appropriate
CellData values for the IO, and comparing those.

5.8.1 Comparison Function for CellData

The following comparison rules were determined for data in truth table cells:

1. Don’t Care (DC) Terms are larger than Algebraic Expressions, which are larger than numeric
values.

2. Algebraic terms are compared based on their alphabetical order, so "A" < "B".

3. Numerical terms are compared based on their values, as expected for numbers: 0 < 1 < 2
etc.

Functions for comparing two values in F# have the following signature:

’T -> ’T -> int

This means that the comparison function takes the two objects to compare as arguments, and
returns an integer which signifies which argument was larger than the other. A positive return
values indicates that the first argument is greater than the second, a negative return value suggests
that the second argument is greater than the fist, and a return value of 0 indicates that the
values are equal. The three comparison rules were implemented as a comparison function with
the aforementioned signature; this can be seen in Listing 5.13. The alphabetical and numerical
comparisons are handled with F# ’s built-in compare function.

Listing 5.13: Function to compare two CellData values

let compareCellData (cd1: CellData) (cd2: CellData) =
match cd1 , cd2 with
| DC , DC -> 0
| DC , _ -> 1
| _, DC -> -1
| Algebra _, Bits _ -> 1
| Bits _, Algebra _ -> -1
| Algebra a1, Algebra a2 ->

compare a1 a2
| Bits wd1 , Bits wd2 ->

(convertWireDataToInt wd1 , convertWireDataToInt wd2)
||> compare

5.9 Truth Table Caching and Order of Operations

So far, five user operations that change the truth table data structure have been discussed. These
are summarised in Table 5.10. From inspecting this table, it can be seen that only changing the
input constraints or changing algebraic inputs requires the truth table to be re-generated. The rest
of the operations simply transform the existing truth table. For this reason, the whole process of
serving the user a truth table is split into various parts, each of which execute in a specific order,
only do as much work as necessary, and cache their results. This whole process is described in
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Figure 5.12. There is a strict order of operations; first the truth table is regenerated, then it is
filtered, and then it is sorted. Column hiding occurs after sorting, but this does not change the
truth table data structure itself, and is therefore discussed in Section 5.11.2. If the truth table is
to be reduced with Don’t Cares, then the filtering stage filters the DCMap instead of the TableMap,
and this propagates through the subsequent stages. The result of each operation is stored in
the TruthTable data structure, which is itself stored in the model. Once a given operation has
completed and stored its result, it calls the next step using a Command. In the MVU architecture,
Commands are used to send a message to the next call of the update function. In the context of
the system in Figure 5.12, using commands means that the next operation in the order is executed
during the next call of the Update function. This ensures that the next operation uses the newly
stored result from the current operation.

Operation Summary
Changing Input Con-
straints

The truth table is re-generated, taking the new input con-
straints into account.

Changing Output Con-
straints

The existing truth table is filtered, with only rows which
fulfil the constraints allowed to remain.

Changing Algebraic In-
puts

The truth table is re-generated, taking the new algebraic
and numeric inputs into account.

Don’t Care Reduction The existing truth table is reduced down into an alter-
nate form with redundancies removed and replaced with
DC Terms.

Sorting The existing truth table rows are reordered to reflect the
user’s chosen sorting method.

Table 5.10: Summary of operations which change the TruthTable data structure

The reason for this system, as opposed to one where all of the operations are performed in one go,
is best explained through an example. Suppose the truth table has two output constraints X = 0
and Y = 0 applied to it, and the user subsequently deletes the latter. Rather than re-generate the
truth table from scratch and then apply the new set of output constraints, Issie simply uses the
cached version of the full table (stored in TableMap), and applies the new output constraint set
to that. This approach reduces the time-penalty for the given operation, as unnecessary steps are
cut out.

Another key feature of the system is that the parameters for each operation are stored indepen-
dently in the model. When an operation parameter, such as the algebraic input set or the constraint
set changes, the update function first updates the stored parameter value in the model, then sends
a command carrying the message to execute the appropriate operation. Storing the parameters has
two uses; the first is that it allows for them to be displayed and tracked. For example, constraints
that are currently being applied are displayed to the user using tags, and are used to validate new
ones. However, the more interesting effect of this concept is that users do not lose their preferences
no matter what other operations they do on the truth table. This too is best explained through
an example. Suppose the truth table from before still has the output constraint X = 0 applied
to it, but the user then chooses to add a new input constraint A = 0. When the user clicks the
Add button in the popup, the AddInputConstraint message, which contains the new constraint,
is sent – this is then processed by the Update function which stores it in the Model. Following
this, a command containing the message RegenerateTruthTable is sent. In the next call of the
Update function, the truth table is regenerated, and once this is completed the rest of the stages
execute in the correct order. As the output constraints are stored independently in the model, the
system remembers to apply X = 0 to the new TableMap. In this vein, any pre-existing sorting
method, column order, or hidden columns are also preserved after the re-generation. This means
that only the operation instructed by the user occurs, meaning that the user is not left confused
by unintended side effects of their interactions with the truth table.
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Figure 5.12: How operations update the Truth Table

5.10 Rendering the Truth Table

Displaying a truth table involves taking the TruthTable data structure and transforming it into a
ReactElement which can be rendered by React. Two methods were considered for this task; Fulma
tables and CSS Grids. The former was used initially, but due to limitations that will be explained
in this section, the latter was eventually favoured.

5.10.1 Method 1: Using Fulma Tables

Fulma, as described in 2.4.3, is an F# library which provides ready-to-use front-end components for
Fable React applications. Component libraries like Fulma have many advantages over plain HTML
components that are manually styled using CSS. All Fulma components are pre-styled with specific
themes, therefore consistently using Fulma components across an application provides consistency
in styling. Additionally, components have style modifiers which can be easily selected by the
developer without manually implementing them in CSS. For example, a Fulma table can be made
zebra-striped using the Table.IsStriped modifier [38]. Certain behaviour, such as automatic
re-sizing and automatic wrapping of content is also implemented in Fulma tables. Due to these
advantages, and given that Fulma components are used extensively throughout Issie, Fulma tables
were initially chosen for rendering the truth table. Listing 2.1 in Section 2.4.3 shows the syntax for
generating a table with Fulma. A table heading tag (thead) contains a table row tag (tr), which
contains the numerous heading cells (th) in the column-order they will be displayed. Similarly, a
table body tbody tag wraps multiple table row tags, which wrap multiple table data td tags. This
tag hierarchy is akin to a nested list representation of a table; therefore it was easy to convert a
list representation of the truth table into a Fulma table. Each TruthTableCell was be mapped to
a td component, and the row containing those cells as mapped to a tr component.

Issue with using Fulma Tables

Table components (both Fulma and HTML) have one major limitation: they are not interactive.
The positioning of content in the table is solely dependent on the order during the definition
of the table. Once the table is defined, there is no way to change the order in which rows or
columns appear in the table at render time. Therefore, all user operations on the table must
update the underlying truth table data structure. The previous Section (5.9) showed how truth
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tables operations are executed and cached in the delivered version of Issie; however when tables
were rendered using Fulma, hiding/un-hiding columns and changing the order of columns used to
also change the TruthTable data structure and cache the result. For example, when a user moved
a column, the order of cells in every TruthTableRow was changed to reflect the new order. This
process involved first copying the sorted list representation into an array, then mutating the array to
match the IO order defined by the user. The effect of the quadratic time complexity, coupled with
the repeated copying of data and slow element-wise access of lists, was that re-ordering operations
on large truth tables (1024 rows, more than 5 columns) took an average of 608.4ms. According
to Robert Miller [41], such a delay does not appear instantaneous to the user and can therefore
make the application feel sluggish rather than responsive. The performance of this method was
deemed unacceptable, as requirement E1.8 clearly states that graphical manipulation operations
must appear instantaneous. Therefore, an alternative approach was considered.

Method Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Method 1 607 605 611 610 609 608.4
Method 2 21 25 22 23 27 23.6

Table 5.11: Time taken to move a column in a Truth Table under different methods (ms)

5.10.2 Method 2: Using CSS Grids

The CSS Grid layout [55] is a system which allows the developer to define the positioning of
specific elements in two dimensions. Unlike tables, where the positioning of elements is defined
inline in the HTML using tags, all display properties of grid elements such as positioning, size, and
behaviour are defined within a CSS style. Each grid element is therefore defined within a div with
the appropriate style applied to it. The advantage of this is that changing element positioning
does not require changing the underlying data structure and rebuilding the grid – simply updating
the styles will change how the grid is rendered. This ultimately means that grids can be made
interactive while tables can not. CSS grids were chosen due to this interactivity property, as
it would greatly speed up column hiding and re-ordering as manipulation of the truth table data
structure would no longer be required. This hypothesis was proven to be true; Table 5.11 compares
the time taken to column move a column under both methods, and shows that manipulating CSS
styles is significantly faster than changing the underlying data structure. One of the reasons why
Fulma tables were initially chosen was that they would maintain UI consistency with the numerous
other Fulma components used in the application. To keep up this UI consistency, the implemented
grid has been styled to mimic the look and feel of Fulma tables.

When the truth table is initially generated, all the IOs in the truth table are arranged in the
default simulation order. All of the IOs in the truth table are extracted in this initial order using
the TruthTable.IOOrder member function. Listing 5.14 shows how a mapping between each of
these IOs and a list of CSS Properties is created. The ttGridColumnProps returns the appropriate
CSS Properties for each IO; most of these properties relate to formatting and appearance, however
the GridColumnStart and GridColumnEnd properties are dependent on the index of the IO. These
properties determine the position of an element in the truth table. The reason why the Start posi-
tion has 1 added to it is that CSS Grids begin indexing from 1, while F# lists begin indexing from
0. This Map is then stored in the Model as TTGridStyles for use during the truth table viewing
process, which turns the truth table data structure into a React Element. The last two properties:
OverflowX and OverflowWrap are responsible for ensuring that long algebraic expressions wrap to
the next line in the truth table instead of overflowing the cell that contains them.

Listing 5.14: Generating CSS Properties for each IO

let ttGridColumnProps index = [
Border "1px solid gray"
Padding "7px"
FontSize "18px"
TextAlign TextAlignOptions.Left
GridColumnStart <| string (index +1)
GridColumnEnd <| string (index +2)
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OverflowX OverflowOptions.Auto
OverflowWrap "break -word"

]

let colStyles =
tt.IOOrder
|> List.mapi (fun i io -> (io,ttGridColumnProps i))
|> Map.ofList

When the truth table is viewed, each TruthTableCell is transformed into a div instead of a td.
The style applied to the div is obtained by looking up the CellIO in the TTGridStyles Map
which was calculated and stored during initial generation. All of these individual grid elements are
wrapped in a container div, which is styled property Display DisplayOptions.Grid to indicate
that it is the element that contains the grid. Any subsequent manipulations to the position or
visibility of specific IOs in the table can be achieved by updating the TTGridStyles Map rather
than the truth table itself. The displayed truth table itself is zebra-striped; the background colour
of rows alternates between white and off-white. This is done to improve the clarity and readability
of the truth table. A study of 244 people concluded that task performance when using zebra-striped
tables is better, or at least no worse than alternative table styles [56].

5.11 Column-based Operations

Operations on the truth table in Issie can be divided into three classes: regenerative, row-based
and column-based. Row-based operations manipulate the truth table data structure because they
filter or re-order rows based on the specific values stored in cells in each row. As truth tables are
stored row-wise in both Map and List representations, manipulating rows is relatively inexpensive.
Column-based operations on the other hand do not require reading values from the truth table
itself, and are more expensive than row-based operations. For this reason, they are carried out by
manipulating the CSS applied to grid elements. As discussed in the previous section, the styles for
each column in the truth table are stored in the TTGridStyles Map, which maps an IO to a list
of CSS properties. Different column-based operations update the stored property list in the map
accordingly.

5.11.1 Moving Columns

Truth table columns can be moved using the left and right arrows on either side of the IO Label
in the heading of each column. The current order of the columns is stored in the model under the
field TTIOOrder; this is an array of IOs in the order they currently appear in the truth table. When
the user clicks an arrow to move a column, the message MoveColumn, containing the IO and the
direction it moves (right or left), is sent. When this message is processed, TTIOOrder is mutated
to reflect the new order. The styles map TTGridStyles is also updated to reflect the new position
of the column in question. During the next view function call, the updated styles will be applied
to the grid elements, resulting in the order changing on the user’s screen at render-time.

5.11.2 Hiding Columns

Using the toggles in the Hide/Un-hide Columns menu section, users can change the visibility of
output columns in the truth table. The list of IOs whose columns are hidden is stored in the model
under the field TTHiddenColumns. Toggling column visibility to Hidden adds the respective IO
to the list, and toggling it back to Visible removes it from the list. Once this field is updated, a
command containing the message HideTTColumns is issued, meaning that the styles are updated
in the next call of the update function. The style corresponding to a hidden IO is updated with
the CSS properties shown in Listing 5.15. Each hidden column is moved to the end of the grid
(hence the requirement for the gridWidth argument), given a width of 0, and has its visibility
property set to hidden, obscuring it from view. The styles of the remaining visible columns are
also updated so that there are no visible gaps in the truth table. A key detail of this system is that
the IO itself is not removed from the stored TTIOOrder – only its style is changed. This means
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that when the IO is eventually un-hidden, it will re-appear in the same place as it was before,
maintaining continuity.

Listing 5.15: Generating CSS Properties for a Hidden IO

let ttGridHiddenColumnProps gridWidth= [
GridColumnStart (string <| gridWidth + 1)
GridColumnEnd (string <| gridWidth + 2)
Width 0
OverflowX OverflowOptions.Hidden
Visibility "hidden"

]
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Chapter 6

Testing and Results

The delivered improved version of Issie was tested from three perspectives. These were correct-
ness, performance, and user experience. Testing the correctness of the improvements made to
Issie included checking that the implemented functionality worked as intended, as well as ensuring
that the application was stable, not crashing regardless of user input. Quantitative performance
testing was conducted by first measuring the average time taken for specific actions and processes,
and then those measurements to Robert Miller’s [41] classes for perceived responsiveness of an
application. Finally, the quality of the user experience was evaluated by giving survey participants
a series of tasks in Issie, measuring their performance, and collecting their feedback.

6.1 Testing Application Stability

An application is considered stable when the user is not subjected to undefined behaviour or
inexplicable crashes while using the application. The stability of the improved version of Issie
delivered by the project was verified by analysing cases in the codebase which could trigger a
system crash, and systematically evaluating that they could not occur. There are two scenarios
which can cause Issie to crash:

• Un-handled exceptions: exceptions can either be generated by the developer or can be gen-
erated by library functions. If these exceptions are not caught and handled appropriately,
the cause the application to crash.

• When failwithf is called in the code: this function is called when an unexpected case that
should never occur is matched in the code. An example of this would be if the Update
function receives the instruction to reduce a truth table with Don’t Cares when no truth
table exists.

6.1.1 Exception Analysis

The code added to Issie was analysed to explore the scenarios in which exceptions could be raised.
Exceptions are uncommon in F# – instead the use of Monad types such as Option and Result is
preferred. When using Monad types, failure of an operation is an option and the programmer is
made to account for the possibility of it while programming. In contrast, functions which return
exceptions place the onus of verifying the arguments prior to the call on the developer. An example
of this is the difference between the functions Map.find and Map.tryFind; both functions look up
a key in a Map and return the corresponding value, but return the value in different ways. When
a key exists, Map.find returns the value, but when it does not exist it raises an exception. If the
developer fails to account for this, the program may crash unexpectedly. In contrast Map.tryFind
wraps the returned value in the Option type, and returns Some value if the key exists in the
Map, or None. Therefore, when using Map.tryFind, the developer must always actively handle the
failure case at that point in the code, either providing alternate behaviour or manually making the
choice to fail the application with failwithf. This significantly reduces the chance of application
crashes due to an oversight made by the developer with regard to exception handling.
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All library functions used in the code written during the project were analysed, and it was checked
which of the ones used could possibly return any exceptions. For each of these functions a strategy
was devised to check whether an exception could occur in practice:

Function Check Pass/Fail

List.except
Ensure that the items to exclude sequence can never be
null. Pass

List.head
Ensure that the supplied list is not empty either through a
conditional statement or pattern match case on the list. Pass

List.updateAt
Ensure that the index is valid (between 0 and length-1)
either through a bounds check or from properties. Pass

Seq.allPairs Ensure that the both sequences can never be null. Pass
Seq.append Ensure that the both sequences can never be null. Pass
Seq.init Ensure that the count can never be negative. Pass

Table 6.1: Library functions in project code which can throw exceptions

Exceptions can also be raised in the code by the developer if required, and caught using a
try-catch block. This project only adds one such exception; the AlgebraNotImplemented ex-
ception which is be raised in the Fast Simulation function fastReduce when algebra is passed to
an unsupported port or component. An exception is used here because manually propogating a
SimulationError up the call stack would be very impractical. The AlgebraNotImplemented ex-
ception contains a SimulationError data structure; whenever there is a scenario in which algebra
is fed to the Fast Simulation, there is a catch block waiting to catch any the exception and return
the SimulationError contained within. Additionally, the XML documentation of functions in the
Fast Simulator has been updated to reflect the new exception. Therefore, it can be said that the
code added by this project to Issie is stable from an exception point-of-view.

6.1.2 Failure Analysis

To ensure that the application could not fail during use, every failwithf case in the project
code was inspected, and a summary made of the scenarios in which the function would be called.
Once the scenario was ascertained, one of two actions woere taken. If the fail case was related to
application state, it was ensured through thorough inspection of the code that such a state could
never occur. If the fail case was related to the UI, testing involved attempting to create those
circumstances in the application. In all cases, attempts to achieve scenarios that would call the
application to fail and exit were unsuccessful.

In addition to exception and failure analysis, the completed application has been used for other
purposes for long periods of time. The process of repeatedly testing the correctness of other features
totalled over 3 hours, in which multiple tasks were carried out using the application. Additionally,
during user experience testing, not a single user reported any crashes or undefined behaviour. This
supports the notion that the code added to the project is robust and stable, and that all situations
with erroneous user input have been handled.

6.2 Correctness Testing

Correctness of the implemented features was tested by testing the features on 6 different circuits,
each of varying complexity. These circuits can be described as:

• A two-input multiplexer circuit implemented only using gates

• A circuit containing a Mux4 component with 2-bit inputs to each data line of the multiplexer

• A circuit which calculates the bitwise And of two 8-bit inputs

• A Full Adder circuit using a Half Adder custom component, all built exclusively from logic
gates

• A circuit which either adds or subtracts two 16-bit values depending on the selected mode
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• An 8-bit ALU, which is a custom component in the design of an 8-bit CPU

• An 8-bit CPU design

A summary of the tested features can be found in Table 6.2. All of the tested features worked as
intended for all schematics, indicating that they have been implemented correctly and will therefore
work reliably when distributed to real-world users.

Table 6.2: List of all features which were manually tested

Feature Checked Pass/Fail

For all combinational circuits, a numeric truth table can be generated for
the whole sheet.

Pass

For all valid selections of a schematic, a numeric truth table can be
generated:

1. The selected canvas is corrected successfully, with newly generated
input or output components.

2. Newly generated IOs are labelled based on which component ports
they connect to.

3. Truth tables for selections can be generated even if errors or sequential
components exist elsewhere in the schematic.

Pass

If there are errors in the schematic, the See Problems button appears in
place of the Generate Truth Table button, and clicking it conveys the error
to the user.

Pass

Users are prevented from generating truth tables for schematics containing
sequential logic, and this reason is conveyed to them.

Pass

For all circuits where the total width of all the inputs combined exceeds 10
bits, a truncated truth table of 1024 rows is displayed, along with a warning
notification informing the user about the truncation.

Pass

The base of numbers in the truth table can be changed using the base
selector.

Pass

Truth table related functionality can be shown and hidden by expanding
and closing menu sections.

Pass

Input constraints can be applied to the truth table and successfully change
the input state so that rows that were previously truncated are now
generated and displayed.

Pass

Significantly restrictive input constraints will reduce the input space enough
so the truth table will no longer be truncated.

Pass

Output constraints filter the existing truth table. Pass

There is an intuitive interface for adding/removing constraints:
1. Clicking on the Add button opens the constraint editor popup.
2. Changing the chosen IO in the IO selection section updates the IO

displayed in the editor section.
3. Real-time validation of constraints is performed as they are entered,

with errors clearly conveyed to the user.
4. Constraints that are currently being applied are clearly displayed to

the user with tags, and can be deleted easily by clicking the cross next
to them.

5. All constraints can be cleared in one go with the Clear All button.

Pass

Columns in the truth table can be hidden by using the column hider toggles. Pass

Continued on next page

65



Table 6.2: List of all features which were manually tested (Continued)

Feature Checked Pass/Fail

Rows in the truth table can be sorted based on a chosen IO, in ascending
and descending order.

Pass

The sorting information is conveyed to the user successfully through the
highlighting of the relevant sorting arrow.

Pass

The order of columns in the truth table can be changed. Pass

Non-truncated truth tables can be reduced with Don’t Cares, with the
resultant table containing no redundant rows.

Pass

Users are prevented from DC reducing truncated truth tables. Pass

Users can change some or all inputs to algebra in the truth table:
1. Clicking the algebra button always spawns the algebra selector popup,

where inputs can be toggled between numeric and algebraic values.
2. If a certain input is not supported as being algebraic, the user is

informed of the reason why. They are prevented from applying the
incompatible algebraic inputs.

3. When algebraic inputs are in the truth table, the outputs are
informative algebraic expressions which is a correct function of the
inputs.

Pass

Algebraic reduction rules are applied correctly, yielding correctly simplified
algebraic expressions at the outputs

Pass

Algebraic expressions are printed correctly in the truth table. Pass

When the truth table tab is open, width of the right section can be changed
using the draggable dividerbar.

Pass

The truth table is responsive:
1. Changing the width of the right section changes the width of the truth

table (therefore of the columns in the table).
2. When the content inside a truth table cell is too wide, the height of

the row automatically adjusts so that the content can wrap to the
next line.

3. Operations on the truth table appear instantaneous.

Pass

The waveform simulation can successfully be run from the new Waveform
Simulator sub-tab.

Pass

6.3 Quantitative Performance Testing

The three following schematics were used for measuring the performance of the application, with
each having slightly different attributes. All tests were performed on a MacBook Air, featuring an
M1 CPU with 8GB of RAM.

1. A circuit containing a Mux4 component with 2-bit inputs to each data line of the multiplexer.
In total, this circuit has 5 2-bit inputs, meaning that it will generate exactly 1024 rows (no
truncation required). This is a simple circuit with only one component, so should be quick to
simulate. However, there are many redundancies in the truth table, so Don’t Care reduction
may take longer.

2. A circuit which either adds or subtracts two 16-bit values depending on the selected mode.
This circuit features slightly more complex logic than the previous one, and also will result
in the truth table being truncated. This will be referred to as the ’Add Or Sub’ schematic.
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3. An 8-bit ALU, which is a very complex schematic featuring lots of library and custom com-
ponents. This should test the generation algorithm to the maximum.

6.3.1 Generating Numeric Truth Tables
The time taken to generate a numeric truth table was measured for all three aforementioned
schematics.

Sheet Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Mux4 52 58 51 49 51 52.2
Add Or Sub 75 72 69 81 78 75
ALU 697 702 700 697 702 699.6

Table 6.3: Time taken to generate a numeric truth table (ms)

6.3.2 Algebraic Truth Tables
The time taken to calculate an algebraic truth table for the 8-bit ALU was measured. The circuit
had five inputs in total: A and B which were 8 bits, X and F which were 3 bits, and Cin which
was 1 bit. A, B, and Cin were set as algebraic inputs for the experiment. Five trials were carried
out, and the average time was calculated.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
45 42 44 47 45 44.6

Table 6.4: Time taken to generate an algebraic truth table for the ALU schematic (ms)

6.3.3 Don’t Care Reduction
The time taken to reduce an existing truth table using Don’t Cares was measured for two schemat-
ics. The Mux4 schematic was first tested, as it contains multiple redundancies and therefore
requires repeated rounds of reduction. Secondly, the ’Add Or Sub’ schematic was tested. As this
schematic exceeds the bit limit, the input space was limited; inputs A and B were constrained to
between 0 and 16. This schematic was chosen as there are no redundant rows in the truth table, as
every input contributes to the output. This represents a scenario in which no DC rows are valid,
and therefore the process will stop after one round of attempted reduction.

Sheet Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Mux4 2590 2586 2589 2616 2598 2595.8
Add Or Sub 265 263 260 259 263 262

Table 6.5: Time taken to reduce a numeric truth table using Don’t Cares (ms)

6.3.4 Graphical Manipulation of Truth Tables
Using the truth table generated for the ALU schematic, the time taken to perform three graphical
manipulations was measured. These manipulations were: hiding an output column, sorting the
truth table, and moving a column. The ALU schematic was chosen as it will generate a truncated
truth table, meaning that the maximum possible 1024 rows will be rendered. It also contains 8
IOs, which is a sizeable amount.

Operation Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
Sorting Truth Table 35 33 36 41 39 36.8
Moving a Column 21 25 22 23 27 23.6
Hiding a Column 43 38 37 39 38 39

Table 6.6: Time taken to conduct different graphical manipulations on a truth table (ms)
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6.4 User Experience Testing

The success and long-term viability of any user-facing application or platform is highly dependent
on the user experience it provides. For this reason, feedback must be collected from users to
evaluate whether the application is achieves its purpose, and whether it if user-friendly. User
feedback was collected to answer the following questions:

1. Do the added features fulfil the project aim, which is to add effective novel ways of visualising
combinational logic in Issie, delivering an improved education and hardware design platform?

2. Are these features implemented in a user-friendly manner?

The participants of the user feedback survey consisted of a group of 12 engineering students across
multiple departments at Imperial College, most of whom had some beginner-level experience with
combinational logic design. Participants were chosen this way so that they would not be confused
by the digital electronics concepts, and would therefore be able to fully appreciate and use the
added functionality. The feedback collection process consisted of two stages; in the first stage
participants were provided with the updated version of Issie, then tasked with investigating five
’mystery’ Issie sheets and summarising the logical function implemented by each. They were asked
to use the truth table functionality while doing so, but were not pointed to where it was located
in the application. The second stage consisted of a questionnaire, in which participants were given
the opportunity to evaluate their experience using Issie.

6.4.1 Stage 1: Mystery Sheets
Participants were provided with five schematics labelled mystery1 to mystery5, and were asked
to describe what each sheet did. While the instructions encouraged them to "use truth tables
and other features in the Truth Tables tab", they were not told where this tab was in the app’s
top-level UI, nor were they instructed on how to use any of the features. This was done on purpose
as Issie meant to be easy to use without explicit guidance. Through this the intuitiveness and
obviousness of the UI for truth tables was tested. The mystery sheets increased in complexity,
with the initial sheets being simple to introduce the user to the application, and later sheets being
more complex to push the user to explore more and use many of the added features. Table 6.7
provides a summary of each mystery sheet, as well as the rationale behind using it in the survey.
The purpose of this exercise was to ascertain whether the added features did indeed help users
gain a better understanding of combinational logic designs. Sheets Mystery 1 to Mystery 4 had a
perfect record, while only one user failed to understand what Mystery 5 was doing.

6.4.2 Stage 2: Questionnaire
Once the participants had a chance to use Issie’s truth table features, they were asked a series
of questions about their experience. These questions fell into two categories. In the first section,
they were presented with a five statements and asked to respond to them ranking them on a scale
of 1 - 5, with 1 corresponding to "Strongly Disagree" and 5 corresponding to "Strongly Agree".
The aim of this part of the questionnaire was to judge the quality of the user experience from
different angles. The responses to this first set of questions were aggregated into a score by taking
the average. Table 6.8 shows the score for each statement, as well as the rationale behind why the
statement was included in the questionnaire.

The second set of questions in the questionnaire focused on determining the discoverability of the
implemented features. Features in an application are only useful if they are discovered by the user,
so observing which features are found is important. In addition to asking whether a named feature
was found, the questions also asked if they found the feature useful. The rates of discovery and
usefulness – i.e. the percentage of participants who discovered the features and found them useful,
is shown in Figure 6.1.
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Diagram Explanation of Mystery Sheet Score
Mystery 1: Simple And Gate The first
mystery sheet was intentionally made very
easy. This was done to allow users to famil-
iarise themselves with the application and the
truth table generation method. The truth ta-
ble for an AND gate is very basic and is one
of the first things engineering students learn.
The idea was that participants would be able
to use this as a reference to understand the
look and feel of truth tables in Issie.

100%

Mystery 2: Multiplexer The second mys-
tery sheet features a single MUX2 component
which takes multi-bit inputs. This circuit was
chosen as it exposes the user to truth tables
which contain numbers other than 0 and 1.
It also lets them DC Reduce the truth table,
making it clear that B does not matter when
SEL is 0, and A does not matter when SEL is
1.

100%

Mystery 3: Full Adder The third mystery
sheet is a full adder, which uses half adders
custom components. Users can generate a
truth table for the half adder alone by select-
ing it. This schematic also allows the user to
explore algebraic reduction, as the arithmetic
relationship can be inferred from the truth ta-
ble.

100%

Mystery 4: Bitwise And The fourth mys-
tery sheet contains a large schematic with cus-
tom components and multiple wires. Such
a schematic can be difficult to understand
simply by looking at it. In contrast, alge-
braic reduction in the truth table identifies the
schematic as being a simple bitwise And be-
twen the two inputs.

100%

Mystery 5: Addition or Subtraction The
fifth mystery sheet incorporates Issie’s built-in
arithmetic components; the N-bit Adder and
the N-bit XOR. The MODE input controls
whether the circuit adds the two inputs, or
subtracts one from the other. This circuit is
more complex than the previous mystery cir-
cuits, and the inputs A and B are both 16 bits
wide. This introduces the user to truth table
truncation. However, using algebra, the func-
tion of the circuit can be discovered.

90.1%

Table 6.7: Mystery Sheets
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Statement Rationale Average Score

Finding the Truth Table tab in
Issie’s top-level UI was easy

Evaluates the top-level UI redesign
of the application. If the user can
find the truth table tab easily, this
means that they will likely be able
to find all simulation activities.

4.45

The functionality related to
Truth Tables is clear and obvi-
ous in the UI.

Obviousness is a core principle of
Issie, so evaluating whether the
added features are presented in a
way such that they are easy to find
and understand.

4.63

Once I found a feature, it was
easy to figure out what it did and
how to use it.

Intuitiveness is a core principle of
Issie, and this question aims to eval-
uate how easily the user can intu-
itively understand what features do.

4.45

Using truth tables made it eas-
ier to understand the relation-
ship between inputs and outputs
in combinational logic compared
to looking at the schematic.

Evaluates the effectiveness of the
truth table feature set as a whole in
improving the visualisation of com-
binational logic in Issie.

4.36

The algebraic expressions in the
truth table make it easy to un-
derstand the intended function of
the circuit.

Evaluates the effectiveness of the al-
gebraic expressions in particular for
clearly communicating what the cir-
cuit does.

4.54

Table 6.8: First set of questions asked in questionnaire

0 20 40 60 80 100

Generating Truth Tables for Whole Sheet

Generating Truth Tables for Partial Selection

Filtering the Truth Table

Hiding/Un-Hiding Columns

Algebraic Reduction

DC Reduction

Rate of Discovery and Usefulness of Features

Useful Discovered

Figure 6.1: Graph showing the percentage of participants which discovered each feature and found
it useful
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6.5 Testing on the 8-bit ALU

To evaluate both the usefulness and correctness of the new combinational logic visualisation meth-
ods added to Issie, an 8- bit ALU was was analysed using the added features. The schematic
diagram of this ALU can be found in Figure C.1 in Appendix C. The inputs into the schematic
have a total width of 23 bits, yielding a theoretical truth table size of over 8 million rows. The truth
table is generated in under 1 second, but truncated to 1024 rows. Due to its size, and given that
the exact specification of the ALU was not known at that point, the numeric truth table was not
massively useful. However, had the specification been known prior to analysis, the numeric truth
table would have undoubtedly been useful for checking the correctness of multiple input/output
combinations. In order to further understand the ALU functions, algebraic reduction was used.
The inputs A, B, and CIN were set as algebra; this reduced the truth table size from over 8
million rows to 64. The first 18 rows of this algebraic truth table can be seen in Figure 6.2. The
other inputs, X and F , eventually propagate to the SEL ports of multiplexers and therefore cannot
be set as algebra. However, this works out very well – these inputs control the behaviour of the
ALU, meaning that it is better for their values to stay as numbers in the truth table. For each
combination of these control inputs, a different expression at the output of the ALU (OUT ) can
be observed. From the algebraic truth table, the logical function of the ALU was described using
eight short statements:

1. When X = 0 and F = 0, OUT is the sum of A and B

2. When X = 0 and F = 2, OUT = A−B

3. When X = 0 and F = 6, OUT = CIN +A−B

4. When X = 0 and F = 4, OUT is the sum of A, B, and CIN

5. When X = 0 and F [0] = 1 (i.e. F is odd), OUT = B

6. When X = 1, OUT = A&B

7. When X = 2 or X = 3, OUT is the XOR of A and B

8. Otherwise, OUT is B right-shifted by 1.
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Figure 6.2: First 18 rows of the Algebraic Truth Table for 8-bit ALU
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Chapter 7

Evaluation

In Chapter 1, the key aims for the project were established and were used to define the project.
This chapter will evaluate whether these aims and deliverables have been met through a variety
of methods. From these aims, a set of formal requirements was defined in Chapter 3, describing in
detail what the project must complete in order to be considered successful. This chapter evaluates
the final project deliverable against the aforementioned aims and requirements. This is done
through a variety of methods, including evaluation against Issie’s core principles, evaluation of
key functionality in the application, analysis of performance data, as well as interpretation of user
feedback.

7.1 Evaluation against Project Aims

The principal aim of the project was to explore novel ways in which interactivity could be added
to automatic schematic-derived truth tables, and how these could be used as a fast aid to design
combinational logic. Alongside the research, the main deliverable was stated as an updated version
of Issie which featured these interactive truth tables. Additionally, an overarching aim was defined
for the project; improving Issie in such a way that it is easier for students to understand the
use of combinational logic in digital design. This section evaluates the improved version of Issie
delivered by this project against these aims, ultimately concluding whether or not the aims were
fulfilled.

Automatic schematic-derived truth tables have been implemented using repeated simulation of the
schematic. These truth tables are generated through repeated simulation of all input combinations,
with the whole process taking under 1 second. A caveat on these schematic-derived truth tables
is that they can only handle an input space 10 bits wide, placing a limit of 1024 rows on truth
table size. While this is a theoretical limitation, as discussed during the design of the system, in
practice, it is unlikely that any user would be able to effectively comprehend a truth table of such
a large size anyways. Additionally, the user has the option to re-generate the truth table with a
tighter set of input constraints or with algebraic inputs to gain a more informative truth table.
Both of these are examples of where interactivity has been added to the original schematic-derived
truth table. Using input constraints, users can limit the input space and find/verify patterns in the
resultant outputs. Seeing all the cases in a well-formatted list is more convenient than having to
repeatedly run simulations and remember the result. Output constraints enable the reverse; users
can specify a set of outputs and see which inputs into the logic cause them to occur. In addition to
these features, truth tables can be sorted, rearranged, and can have some of their output columns
hidden. These are all interactive features which allow the user to re-organise or reduce the truth
table to make it more informative.

Establishing that interactive schematic-derived truth tables were added and discussing the possible
uses of these features is only one part of the evaluation. Ultimately, the project can only be con-
sidered successful if the features added to Issie augment users’ understanding of the combinational
logic they are designing. To establish whether this was the case, 11 engineering students with be-
ginner’s level experience were provided with the updated version of Issie and asked to analyse five

73



’mystery’ circuits using the truth table tab. Following this, they were asked a series of questions
about their experience using the application. The methodology for this user experience testing is
described in detail in Section 6.4, along with the results. 100% of participants were able to correctly
identify the combinational logic function implemented by mystery circuits 1 to 4, while just over
90% were able to identify mystery sheet 5. These results imply that the added features to Issie do
help users understand the relationships between inputs and outputs in combinational logic circuits.
Additionally, the participants were themselves asked to evaluate the extent to which the updates
were helpful. They were asked how much they agreed with the following statements:

Using truth tables made it easier to understand the relationship between inputs and outputs in
combinational logic compared to looking at the schematic.

The algebraic expressions in the truth table make it easy to understand the intended function of
the circuit.

The first statement had a score of 4.36, while the second statement had a score of 4.54. This
indicates that most participants either agreed or strongly agreed with the statements. Therefore
it can be said that the participants of the user experience survey agreed that the added methods
for visualising combinational logic in Issie have helped them to better understand the relationships
between inputs and outputs in the logic.

To further verify this conclusion, an 8-bit ALU was analysed using the truth table functionality
added by the project. The purpose of the test was to use the features to ascertain the logical
function of the circuit. The successfully deduced function, along with part of the algebraic truth
table used to deduce it, is described in Section 6.5. The ALU, which has an input space of over 8
million possible combinations, was reduced to a truth table with only 64 rows through algebraic
reduction. Following analysis of the algebraic truth table, the behaviour of the ALU was narrowed
down to 8 distinct cases. The fact that the relationships between the inputs and outputs for such
a complex schematic, featuring numerous components (including nested custom-components) can
be inferred in this way suggests that the new methods for visualising combinational logic in Issie
are effective and successfully fulfil the project aims.

7.2 Evaluation against Issie’s Core Principles

Chapter 1 outlined the three key principles of Issie. These stated that all new features added to
Issie must be robust, obvious, and intuitive. This section looks over the nature of the additions
made to Issie, and evaluates whether they align with these principles.

7.2.1 Robustness

Software is considered robust when it is able to behave correctly under exceptional circumstances,
such as when presented with erroneous or malformed user input. In Section 6.1, the process
of analysing the codebase to verify against exceptions and failures is described. This process
found that the majority of functions used in the project’s codebase were exception-free, and the
few functions which could throw exceptions had checks or system constraints implemented which
would prevent invalid arguments being passed to them. A similar verification process was also
undertaken for cases where failwithf is called, and also concluded that these cases would not
occur due to checks and constraints. Finally, it was observed that even after hours of manual
and user testing, no crashes or undefined behaviour were reported. These hours of use included
a variety of interactions with the UI, many of which were malformed and would have resulted in
errors were it not for the error checking and handling systems built into Issie.

This displayed resilience to crashes indicates that the decision to continue developing Issie in F# was
the correct one. The majority of the application’s data is immutable – therefore by extension most
of the functions are referentially transparent (deterministic). The resulting lack of dependency
on shared mutable state means that function behaviour is far more predictable. Another key
aspect of F# which greatly adds to the robustness of the codebase is the fact that every language
construct is an expression. Every expression must return a value, and all conditional branches
must return a value of the same type. The effect of this is that every case must be considered
and explicitly handled, reducing undefined behaviour. When combined with F# ’s powerful type
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inference, courtesy of its Hindley–Milner type system, this means that even complex conditional
statements or pattern matches are correctly analysed by the compiler. The evalExp function,
which is responsible for implementing the reduction rules for algebraic expressions, is an example
of a large pattern match expression with many complicated cases. As well as generating warnings
when specific expression cases weren’t matched, it also did so when the cases were ordered in such
a way that one would never be matched. This compile-time checking meant that many potential
errors were caught as the code was being written, significantly reducing the likelihood of bugs being
encountered at runtime.

In summary, following analysis of exception and failure cases, alongside observed stability in user
trials and language constructs, it can be said that the updated version of Issie delivered by this
project is robust.

7.2.2 Obviousness
Issie is built to be obvious – it should be clear to the user what is happening on their screen
without any additional explanation. The user interface has been designed to be as clear as possible.
Buttons are labelled with verbs which succinctly describe what they do, and are colour coded in
a consistent manner with Issie’s existing buttons. An example of this is the colour coding of the
Generate Truth Table button. It is green if everything is correct and a truth table can successfully
be generated, while it is yellow when there are issues that the user must resolve. In this scenario,
clicking on the button clearly describes the error and highlights its source on the canvas. When the
schematic contains sequential logic, the button is still green, but light in colour, communicating
that while the schematic is correct, truth table generation is unavailable. Clicking this button then
results in an error notification which informs users that truth table generation is only supported
for combinational logic. In situations where the user is prevented from performing a certain action,
such as applying an invalid constraint or DC reducing a truncated table, the button that would
usually let them perform that action is greyed out and un-clickable. This disabling of the button,
along with the changed mouse cursor, clearly communicates to the user that the action is forbidden
under the current circumstances. A helpful warning message is either displayed near the button or
as a tooltip to inform the user of the reason. This prevents them from becoming confused. Toggles
are used in two places: hiding/un-hiding truth table columns and toggling inputs between numeric
values and algebra. The toggle states are differentiated by colour as well as text. This means that
from a glance it is obvious which of the two states is currently selected for each toggle.

While analysis of the various design patterns of the extensions made to Issie appears to show that
they appear obvious, ultimately the obviousness of the features is best evaluated by real end users.
The user questionnaire presented participants with the following statement:

The functionality related to Truth Tables is clear and obvious in the UI.

They were then asked to rank their opinion from Strongly Disagree (1) to Strongly Agree (5). As
shown in Table 6.8, the average response score for this question was 4.63 out of 5. This indicates
that most users either Agreed or Strongly Agreed that the truth table features in Issie are clear
and obvious. Following the questionnaire, participants were given a free-form text box to voice
any general feedback in. One response collected through this method stated that while most truth
table functionality was clear, it was not hugely obvious what the "Reduce" button did at first
glance. As the sheet that was open at the time did not contain any redundancies, the truth table
did not change even after the user clicked the button out of curiosity. As a result, they were
left slightly confused. This issue could be mitigated by 1) re-naming the button to something
like "Remove Redundancies" to increase clarity, and 2) displaying a message stating there are no
redundancies in the table if that is the case. With the exception of this comment, it is clear that
the user experience concerning the obviousness of the UI is positive. This indicates that while
small improvements could be made, on the whole, this project’s additions to Issie align with its
principle of obviousness.

7.2.3 Intuitiveness
Issie must be intuitive; users should not have to spend time and effort learning how to use features.
This means that lab time can be spent learning Digital Electronics concepts, rather than figuring
out the application. Consistency is a key factor in building an intuitive environment – if multiple
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features work in the same predictable way then there is less for the user to deduce from the
application. Care has been taken to maintain consistency with Issie’s existing features, with code
and behaviour being reused from the existing Step Simulator wherever possible to improve the
experience of both the user and future developers. To ascertain the intuitiveness of the updated
version of Issie, the user questionnaire presented participants with the following statement, and
asked to what extent they agreed with it.

Once I found a feature, it was easy to figure out what it did and how to use it.

As shown in Table 6.8 this statement had an average response of 4.45, implying that as a whole
users agreed or strongly agreed that features were easy to understand and use once they were
found. This in turn indicates that the features are intuitive, and therefore align with Issie’s core
principles.

7.3 Evaluation of Application Performance

Section 6.3 describes the measured performance for the application, along with the methodology
used to obtain those results. From this, it is clear that the performance criteria set out in the
requirements have been met. The average time taken to generate a truth table for a complex
schematic is around 700ms, while other operations (bar one) on the truth table take under 100ms.
The worst performing operation on the truth table by far is Don’t Care reduction. On sheets
with no redundancies, it still takes over 250ms on average to detect this. On sheets with multiple
redundancies, such as a simple Mux4 circuit, it took up to around 2.6 seconds to completely
reduce the truth table. This poor performance is likely due to brute-force nature of the reduction
algorithm, which has a poor time complexity. If the n represents the number of rows in the truth
table, and m represents the number of inputs, each call of the reduction algorithm has a worst
case complexity of O(m3n3). For a truth table with r recursive inputs, the recursion function
is called r + 1 times. This terrible time complexity is likely due to the fact that the algorithm
applies a brute-force approach to DC reduction. For each input, all possible ’Don’t Care’ rows
are calculated, and these are then each tested to check whether they are valid. Switching to some
heuristic-based method will likely bring performance improvements.

The use of immutable data structures also affects application performance. Operations that would
usually mutate contents of data structures instead copy large chunks of data – this adds overhead.
Updating the values at specific indices in a list is particularly expensive. This operation is O(n)
by itself as F# lists are implemented as singly-linked lists, and on top of this the entire list must be
copied to a new location in memory. Therefore, it is likely that badly performing functions, such
as the brute-force reduction algorithm, could be optimised by replacing immutable data structures
(e.g. Lists and Maps) with mutable structures (e.g. Arrays). This technique was successfully used
to improve the efficiency of the Step Simulator earlier during Issie’s development. However, even
with its performance issues, DC reduction still takes less than 4 seconds, meaning that it fulfils
the performance requirements outlined in Chapter 3.

From a qualitative perspective, the application feels lightweight and responsive. No action (other
than DC Reduction) creates a delay that loses the user’s attention, and all UI operations ap-
pear instantaneous. This perception aligns with the measured timings in accordance with Robert
Miller’s descriptions of perceived responsiveness, which were summarised in Section 2.7. This
responsiveness means that the updated version of Issie, much like its predecessor, does not lose
the user’s attention and has greater perceived interactivity, which in turn improves the learning
experience.

7.4 Comparison Against Issie 3.0.0

As of the time of writing, the latest release of Issie is version 3.0.0. In this version of Issie,
combinational logic can only be visualised by either viewing the schematic diagram or simulating
specific input combinations in the step simulator. This section compares the updated version of
Issie delivered by the project with Issie 3.0.0, highlighting the different areas in which the updated
version improves Issie. Issie 3.0.0 is referred to as the base version, while the version of Issie
delivered by the project is referred to as the updated version.
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Consistent Top-Level UI Issie 3.0.0’s top-level UI was analysed in 2.5. One major issue found
with it was its lack of consistency for running simulations. In Issie 3.0.0, the step simulator is
accessed via a tab in the right section, while the waveform simulator is launched via a button in
the top bar of the application. This results in a fourth tab appearing in the right section, which
contains the actual wave simulation interface. This was deemed too inconsistent and confusing,
and was therefore improved upon in the updated version of Issie. Now, all simulation activity
(Step Simulator, Truth Table, Waveform Simulator) is contained in sub-tabs underneath a main
simulations tab in the right section.

Viewing all Input/Output relationships For smaller schematics (those that will not be trun-
cated), truth tables allow for all pairs of input and output combinations to be viewed in one go.
This is in contrast to the base version of Issie, where the user has to manually run multiple sim-
ulations. The results of these simulations are not stored anywhere, so to view all relationships
in one place the user must write down the result of each simulation prior to simulating the next
input combination. In addition to describing the whole schematic in a single, organised structure,
this functionality is also useful in situations where the user may want to verify a specific batch of
relationships hold true for some logic.

Easier to verify schematic behaviour A major advantage of being able to view multiple pairs
of input and output combinations at once is that it becomes much easier to verify whether the
circuit built by the user actually implements the required function. In Issie 3.0.0, users can only
verify circuit behaviour by manually running different simulations. This is a time-consuming and
tedious process, meaning that users are likely to not do it properly. In contrast, not only do truth
tables allow multiple simulation results to be viewed in one go, but they can be filtered with input
constraints to allow results for specific cases to be viewed together. Algebraic truth tables take
this one step further, with algebraic expressions representing the logical function for even easier
verification.

Debugging parts of a schematic When designing a schematic, there may be situations where
a user has some part of their logic working correctly, but has errors (either syntactical or logical)
elsewhere in the schematic. The ability to generate truth tables for partial selections of the sheet
means that users can investigate or verify the behaviour of specific parts of the schematic, regardless
of whether the rest of the schematic is complete. This has many benefits; when designing schematics
users can test parts of the sheet as they go. When analysing/debugging schematics, users can take
a divide and conquer approach by establishing what specific parts of the sheet do. In the base
version of Issie, sub-parts of a design can only be simulated if they are contained within separate
sheets. Therefore, if a user wished to debug a specific part of the logic in a sheet, they would have
to recreate it in a separate sheet. This is a tedious process compared to simply selecting that part
of the logic and generating a truth table for it.

Redundancy Detection Through reduction with Don’t Cares, redundancies in a logic design
can be identified in the updated version of Issie. While this feature was envisaged as an analysis
tool, it also aids logic design. If, due to some mistake an input is redundant in the designed logic,
Don’t Care reduction would clearly label it as so. In contrast, it may be difficult to spot such an
issue when simply running simulations with the step simulator.

7.5 Evaluation of Filtering Methods

The size of the truth table can be reduced by filtering it with input and output constraints. The
section for adding these constraints is collapsed under the Filter menu option in the truth table tab.
Input constraints are generally an effective way of manipulating an existing truth table to check
for specific cases, especially when used on algebraic truth tables. For example, when analysing the
ALU in Section 6.5, the input combinations which led to the 8 distinct cases were isolated and
verified using input constraints on X and F .

Output constraints can be used to observe which input combinations result in some specified
output combination(s). This feature is often most effective when used in conjunction with other
features. Prior to the implementation of algebraic truth tables, output constraints were very useful
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for finding which input combinations resulted in specific behaviour. For example, the following
steps were used to determine the cases where the ALU was performing subtraction:

1. Generate the numeric truth table

2. Using input constraints, set the value of A to a number, and B to a smaller number (e.g. 21
and 7)

3. Add the output constraint where OUT is equal to A−B (e.g. 14)

4. Observe the values of the other controlling inputs X and F

While useful, there are limitations on output constraints. They are not as useful on truncated
truth tables, because they filter the existing truncated truth table (1024 rows), rather than the
complete theoretical truth table like the input constraints do. This means that the user may
make incorrect deductions about the logic. Users are warned about this when they add output
constraints, but there is a possibility that they might miss this warning. Unfortunately, there is
not much that can be done to address this issue completely, as applying output constraints requires
simulating the entire input space and then filtering the corresponding output space; this would
be far too time-consuming for schematics with large input spaces. Another limitation of output
constraints in Issie is that they are purely numerical, meaning that they cannot be applied to
algebraic truth tables. Pure numerical output constraints also lack the ability to filter numeric
truth tables based on relationships. Both these limitations could be overcome by introducing
algebraic output constraints. The possibilities unlocked by implementing these in the future are
discussed in Section 8.1.1.

7.6 Evaluation of Reduction Methods

7.6.1 Algebraic Truth Tables

Truth tables can be reduced by turning them into Algebraic truth tables. Users set specific inputs
to algebraic terms, and the outputs in the truth table are displayed as functions of the algebraic
terms. In the user experience questionnaire, a majority of participants either agreed or strongly
agreed that algebraic expressions in the truth table made it easier to understand the intended
function of the circuit. This, in addition to the successful analysis of the ALU, indicates that the
implementation of algebraic expressions in Issie has been effective and in line with the aims of the
project. One of the major factors behind this effectiveness is the comprehensive set of algebraic
reduction rules defined in Section 5.7.2, which can recognise and interpret a wide array of patterns.
However, there were only a finite number of cases which could be implemented over the course
of the project, meaning that there are some limitations to the extent certain schematics can be
interpreted.

The N-bits Adder component in Issie is used for arithmetic operations, and this behaviour is used
when constructing algebraic expressions during algebraic simulation. However, users can define
their own ripple carry adders. Ripple-carry adders implement n-bit addition using multiple full
adder components, meaning that they are built purely out of logic gates. This means that detecting
arithmetic done using a ripple-carry adder requires a very complex reduction rule which checks
for a specific combination of Boolean operations. A complex rule has already been written to
detect full adders, but the additional challenge with ripple carry adders is that they can be n-bits
wide. While the detection of n-bit ripple carry adders was investigated, it was ultimately not
implemented due to the complexity of the task and time limitations of the project. However, it
could be implemented in the future.

7.6.2 Don’t Care Reduction

Non-truncated truth tables in Issie can have redundant rows removed via reduction with Don’t
Cares. This is implemented using a recursive algorithm. This functionality was tested on multi-
plexers, as well as combinations of logic gates and was found to work as intended. While powerful
in specific cases, it has been overshadowed by algebraic reduction, which reduces the truth table
to a greater extent and is far more versatile. In fact, when prompted for general feedback in the
user experience questionnaire, one participant wrote:
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"While the reduce button does work, the algebra feature is much better so it’s kind of redundant?"

While it is ironic that a feature implemented to remove redundancies in the truth table may itself
be considered redundant by a user, the participant does raise a somewhat valid point. In most
situations, algebraic reduction results in a smaller truth table, while the algebraic expressions are
far more readable and information dense compared to numerous Don’t Care (X) terms spread
across rows. Another limitation of DC reduction is that it only marks inputs as redundant when
they do not affect all of the outputs in that row. In contrast, information on whether a given
input affects a specific output can be obtained from algebraic expressions; if the output expression
does not contain a specific input label then that input is redundant with regard to that output.
However, DC reduction may be useful in circuits where certain key inputs into the logic may be
passed to the SEL port of a multiplexer, resulting in algebraic reduction not being as useful.

A more solvable issue with DC reduction is that seems to not align completely with the Issie
principle of obviousness. Reduce is quite a vague term and it may be a better idea to change the
button text to something like "Remove Redundancies". In addition to this, users are currently not
informed when no redundancies are found in the truth table. As a result, it appears that pressing
the button did nothing. Two possible solutions to this issue could be:

1. Reduce button behaves like Start Simulation or Generate Truth Table button. The table is
DC reduced in the background, and if no redundancies are found the button is greyed out.

2. The system stays as it currently is, but if no redundancies are found in the reduction process
the user is informed using a popup.

While the former would be more intuitive and obvious, it would involve reducing the truth table in
the background. This is a time-consuming process which could decrease the responsiveness of the
application. On the other hand, while the latter approach would require an extra click, it would
be much easier to implement. It is likely that one of these solutions will be implemented prior to
the merger with the master branch of Issie.

Evaluating DC Reduction as a whole, while it is inferior to algebraic reduction, there are specific
niche cases where it may still be useful. Once the features added to Issie by this project are tested
by a wider user base during Digital Electronics labs at Imperial College London, a decision can be
made on whether it is worth keeping in the application.

7.7 Evaluation against Requirements

This project has two main deliverables; an extended and improved version of Issie, and any appro-
priate documentation for the application. At the beginning of the project, a series of requirements
were formalised which determined what the project should aim to accomplish, and under what
circumstances could it be considered successful.
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Table 7.1: Evaluation against Requirements

Requirement Comment Implemented?

LOGIC VISUALISATION

E1.1 A numeric truth table can be generated for a sheet
containing combinational logic. This truth table is
exhaustive when the sum of input widths is under
10. Otherwise, it is still correct, but truncated.

Yes

E1.2 A numeric truth table can be generated for a partial
selection of a sheet. This truth table is exhaustive
when the sum of input widths is under 10.
Otherwise, it is still correct, but truncated.

Yes

E1.2.1 New inputs and outputs are created to form a
correct Issie schematic.

Yes

Continued on next page
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Table 7.1: Evaluation against Requirements (Continued)

Requirement Comment Implemented?

E1.2.2 The newly generated inputs and outputs have
intelligently inferred labels based on which
component port they are connected to.

Yes

E1.3 The truth table generation algorithm is versatile
and can handle any combinational Issie schematic.

Yes

E1.3.1 Multi-bit inputs and outputs are supported.
Temporary inputs/outputs created while generating
a truth table for a selected logic block have correct
widths inferred using either WidthInferrer or the
connected component.

Yes

E1.3.2 Custom Components (sub-sheets) are supported,
including when they are part of selections. However,
all custom component ports must be connected so
as to allow WidthInferrer to find port widths.

Yes

E1.3.3 Inputs, Outputs, and Viewers are all shown in the
truth table

Yes

E1.4 Users have the option to reduce the truth table
using Don’t Cares. This is only applicable to
un-truncated tables.

Yes

E1.5 Filtering of truth tables with input and output
constraints has been implemented. Caveat on
output constraints is that they only filter the
generated table, so does not return the full set for a
truncated table.

Yes

E1.6 Truth tables are displayed in a clear and easy to
understand format, with striping to make
differentiating rows easier. Features involving truth
tables are presented in a menu which can be easily
explored and clicked through. Messaging is
consistent and guides the user.

Yes

E1.7 Truth table generation takes place in under 1
second, while reduction times for the largest
possible table are consistently under 3 seconds. The
fast generation time is due to truncation, but there
is not much value in generating more rows.
Furthermore, generating more rows than this makes
the UI feel sluggish.

Yes

E1.8 Graphical manipulation operations on the Truth
Table, such as re-ordering rows, sorting etc. appear
instantaneous (i.e. take less than 100ms).

Yes

E1.9 Through truth table reduction and viewing of
algebraic truth tables, complex relationships
implemented by large circuits, such as ALUs, can be
summarised using a few different expressions.

Yes

D1.1
Algebraic truth tables have been added to Issie.
Expressions are calculated using algebraic
simulation.

Yes

Continued on next page
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Table 7.1: Evaluation against Requirements (Continued)

Requirement Comment Implemented?

D1.1.1 Multiplexers: Both library and gate-level
multiplexers are recognised correctly. Library N-bit
Adders are supported, as well as Half and Full
adders defined by the user using gates. User-defined
ripple carry adders are not recognised perfectly, but
do still give an idea of the addition.

Yes

D1.1.2 Algebraic truth table can be calculated for all
combinational circuits, with the only limitation
being that algebra cannot be passed to SEL ports.

Yes

D1.2 A fairly interactive truth table interface has been
provided, with responsive and intuitive
manipulations available. However, some additional
work could be done to make the truth table more
interactive.

Yes

D1.2.1 Implementing functionality where mousing over
parts of the truth table could highlight parts of the
schematic was considered, however this would
require changing draw block behaviour. Not only
would implementing this be time consuming, but
outside of annotating specific IOs not much
potential was seen in this approach. Other
interactivity, such as highlighting cells in truth
tables was considered, but was not implemented due
to time constraints.

Yes

D1.2.2 Users can rearrange order of columns/rows in the
truth table.

Yes

D1.2.3 Users can sort the truth table in ascending and
descending order.

Yes

D1.1 The user can access truth table related functionality
easily – all features are contained within the truth
table tab, and are either presented on the truth
table itself (sorting and moving columns), or
grouped under a labelled menu section. The user
experience survey backed this up.

Yes

SOFTWARE/DOCUMENTATION
QUALITY

E2.1 The project has delivered performant, working,
bug-free code which adheres to Issie’s code
guidelines and other principles such as "MVU-ness".
Performance has been tested quantitatively, while
correctness and resistance to failure has also been
verified.

Yes

E2.2 XML comments have been written for all functions
in the delivered code, alongside other inline
comments to explain how certain key parts work in
order to make the codebase more maintainable for
future developers.

Yes

Continued on next page
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Table 7.1: Evaluation against Requirements (Continued)

Requirement Comment Implemented?

E2.3 Code has been written with maintainability in
mind. Care has been taken to use standard library
data structures and functions as much as possible,
and any newly introduced types and processes have
been documented extensively in the code.

Yes

D2.1 Certain UI changes, such as moving the Waveform
simulator and fixing bugs related to the dividerbar
were implemented. The UI was not redesigned ,
however it was evaluated and its current form
appears to be adequate.

Partially

D2.2 The Issie website was not updated over the duration
of the project itself. However, it will be updated in
due course.

Not yet

7.8 Summary

In this section, the updated version of Issie delivered by this project was evaluated against the
initial project aims, Issie’s Core Principles, and the requirements set out at the beginning of the
project. In the first two sections, using user questionnaire results, observations made about the
application, and other results from the testing stage, it was established that all project aims had
been met and all core principles had been maintained. In the evaluation against requirements, it
was established that all Essential requirements, and all bar one Desired requirements, have been
fulfilled by the project. Certain areas of possible improvements were also identified. Three issues
with Don’t Care reduction were found – these are a lack of obviousness, possible redundancy in the
system, and performance. While the first issue has a fairly straightforward fix that will most likely
be implemented soon, the others will require further analysis and effort to solve. Cases where
certain features could be improved were also identified. This includes expanding the algebraic
reduction rules to cover more cases, and implementing algebraic output constraints.

To summarise, the updated version of Issie delivered by this project comfortably fulfils all of the
metrics and requirements defined for it at the beginning of the project. Therefore it, and the
project as a whole can be considered a success.
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Chapter 8

Conclusion and Further Work

In conclusion, this project delivered an updated version of Issie, featuring interactive automatic
schematic-derived truth tables which can be filtered, manipulated, and reduced using either Don’t
Care terms or Algebra. These truth tables offer users of Issie a novel way to visualise combinational
logic relationships in their designs, aiding the design process and improving users’ understanding
of Digital Electronic design. With the majority of survey participants either agreeing or strongly
agreeing that the added truth tables and algebraic expressions made it easier to understand the
relationships between combinational inputs and outputs, it is evident that this novel visualisation
technique is a valuable tool in Issie’s arsenal for improving the learning experience for those learning
digital logic design. Algebraic truth tables in particular have been very effective, condensing
the millions of possible combinations in a complex ALU circuit into only 64 rows, which could
then easily be further reduced by hand to specification comprising only eight lines. Through the
collection of user feedback, it has been established that the novel logic visualisation methods added
to Issie make it easier for users to better understand the relationships between inputs and outputs
in combinational logic. All of the project aims and requirements have been met, meaning that this
project can be considered successful.

This project has presented many unique and interesting challenges, and the process of overcoming
them has been immensely rewarding. One of the initial challenges of the project was simply getting
started with the implementation, as it involved working on an existing codebase which exceeded
20,000 lines of F# code. Therefore, prior to the implementation phase, a thorough analysis of the
codebase was undertaken to create a solid platform of understanding upon which the new features
could be built.

Writing the canvas correction algorithm, which enables users to generate truth tables for partial
selections of a sheet, was also particularly challenging. From the outset, Issie has been effective at
clearly describing errors to users, but has never taken steps to automatically correct these errors
itself. As a result, all pre-existing simulation code is expected to take only syntactically correct
canvas states. A major challenge with correcting a partial canvas state is that the user is free
to make any selection possible. Therefore there is no guarantee of the form of the canvas state
the algorithm may receive. Inferring the user’s intentions from this unpredictable canvas state
and generating a useful truth table with correct widths and informative IO labels was a complex
process which posed both conceptual and implementation challenges.

Another task which was conceptually challenging was the design of the new formal language for
algebra, in particular the definition of reduction rules. Some reduction rules, such as those for
arithmetic simplification, appear simple on the surface but are far more difficult to generalise
within a given system. Mixing Boolean algebra, fixed-width arithmetic, and other bus operations
to create a novel algebraic system was in itself a stimulating task, and implementing methods to
reduce these expressions was even tougher. However, the hard work undertaken to overcome these
challenges has paid off; the delivered system is capable of simplifying complex circuits into succinct
and informative algebraic truth tables.
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8.1 Possible Further Work

While this project has undoubtedly been a successful endeavour, there are a few areas where its
work could be extended to achieve an even better outcome. This section highlights some of these
possible extensions.

8.1.1 Algebraic Output Constraints
As mentioned during the evaluation, output constraints can currently only be applied to numeric
truth tables. One possible improvement to be implemented in the future could be the introduction
of output constraints whose right-hand side is an algebraic expression. This would have two advan-
tages. The first is that the outputs of the algebraic truth table could be successfully constrained
– only algebraic expressions which matched the output constraints would remain in the displayed
table. The second is that algebraic constraints would also allow for a more intelligent filtering of
numeric truth tables. For example, the output constraint OUT = A+B would filter the table so
that only rows in which the output was the sum of inputs A and B would be permitted. Such a
feature would likely help users better analyse and understand the logic being designed.

8.1.2 More Algebraic Reduction Rules
Expanding the set of formal algebraic reduction rules would allow for the recognition of more
complex constructs. One such example would be the recognition of ripple-carry adders. Currently,
the algebraic truth table does recognise ripple-carry adders to some extent. For example, the
output of a two-bit adder is:

(A[1] +B[1] + carry(A[0] +B[0])) :: (carry(A[0] +B[0]))

However, ideally this would be simplified to A+ B. The pattern to be checked for is recursive in
nature, and would require a more formal definition prior to implementation in the future.

8.1.3 Adding Algebra to the Step Simulator
During the project, the Fast Simulation code was extended to support algebraic expressions. This
was done so that algebraic truth tables could be implemented. The Step Simulator also uses the
Fast Simulator to run simulations – therefore adding support for algebraic inputs and outputs
to the step simulator would only require a few changes, with the bulk of those being changes to
the UI to allow an input to be toggled between algebra and numeric values. For the purposes of
consistency, UI elements like the algebra selector popup could be re-used from the existing truth
table codebase.

8.2 User Guide

Instructions on how to install Issie can be found on the Github page: https://github.com/tomcl/
issie. This page also contains a link to the Issie website, which contains a guide on how to use
the application.
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Appendix A

Screenshots of Issie 3.0.0

Screenshots taken on MacOS.

Figure A.1: Issie’s opening screen
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Figure A.2: A sheet (schematic) open in Issie, with a component and wire selected

Figure A.3: Issie’s Waveform Simulator selection menu
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Figure A.4: Issie’s Waveform Simulator

91



Appendix B

Work Breakdown Structure
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Figure B.1: Work Breakdown Structure with ordered backlog
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Appendix C

8-bit ALU Schematic
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Figure C.1: Schematic Diagram for an 8-bit ARM ALU
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