
Evaluation and Re-implementation of
Issie on the .NET Platform

Author

Kaiwen Liu
CID: 01845986

Supervised by

Dr Thomas Clarke

Second Marker

Mr S. Baig

A Thesis submitted in fulfillment of requirements for the degree of
Master of Engineering in Electronic and Information Engineering

Department of Electrical and Electronic Engineering
Imperial College London

2024

Abstract

This project aims to re-implement and evaluate the Interactive Schematic Simulator with Inte-

grated Editor (Issie)[1], a digital circuit simulation application used at Imperial College London,

on the .NET desktop platform[2] to enhance efficiency, security, and maintainability. The report

provides implementation details, future works and evaluates the necessity of making a full port to

a new platform based on performance comparison.

ii

Declaration of Originality

I hereby declare that the work presented in this thesis is my own unless otherwise stated. To the

best of my knowledge the work is original and ideas developed in collaboration with others have

been appropriately referenced.

I have used ChatGPT v4 as an aid in the preparation of my report. I have used it to improve

the quality of my English throughout, however all technical content and references comes from my

original text.

iv

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or

transmit the thesis on the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any reuse or redistribution,

researchers must make clear to others the licence terms of this work.

vi

Acknowledgments

I would like to express my deepest gratitude to my tutor, Dr. Thomas J. W. Clarke of Imperial

College London, for his invaluable guidance, patience, and expert advice throughout the duration

of this project. His insights and suggestions have been crucial in shaping both the direction and

the success of this work.

I am also immensely thankful to my friends and family for their unwavering support and

encouragement. Their belief in my abilities and constant motivation has been a source of strength

and inspiration during the challenges of this research.

Their collective support has been instrumental in my personal and academic growth, and I am

deeply appreciative of their contributions to my journey.

viii

Contents

Abstract i

Declaration of Originality iii

Copyright Declaration v

Acknowledgments vii

List of Acronyms xi

List of Figures xiii

1 Introduction 1

2 Background Research 3

2.1 Issie . 3

2.1.1 Web Ecosystem . 5

2.1.2 Functional Programming . 6

2.1.3 MVU Architecture . 7

2.2 The .NET Re-implementations . 9

2.3 Summary . 10

3 Requirement Capture 11

3.1 Technical Requirements . 11

3.2 Functionality Requirement . 12

3.3 Conclusion . 14

4 Analysis and Design 15

4.1 Availability of GUI Frameworks . 15

4.1.1 DSL and Wrapper . 17

4.2 Tech-stack Comparison . 20

4.2.1 Application Life Time . 20

4.2.2 Dependency Management . 23

4.3 Conclusion . 25

x

5 Implementation 27

5.1 Proof of Concept . 27

5.2 Implementation Challenges . 29

5.2.1 DSL Differences . 29

5.2.2 Type System . 30

5.2.3 File Management . 31

5.3 Porting Results . 32

5.4 Further Developments . 35

5.5 Summary . 36

6 Test 37

6.1 GUI Performance Test . 37

6.2 Simulator Performance Test . 39

6.3 Memory Consumption . 39

6.4 Summary . 40

7 Evaluation 41

7.1 Performance . 42

7.1.1 Rendering Performance . 42

7.1.2 Simulation . 46

7.1.3 Memory . 46

7.2 Implementation Evaluation . 47

7.2.1 Tech Stack and Project Management . 47

7.2.2 Implementation Challenges . 47

7.2.3 Functionality Completeness and Future Works 48

7.3 Summary . 48

Conclusions 49

A Appendix 51

Bibliography 55

List of Acronyms

Issie Interactive Schematic Simulator with Integrated Editor

UI User Interface

GUI Graphic User Interface

MVU Model-View-Update

API Application Programming Interface

DOM Document Object Mode

CPU Central Processing Unit

EEE Electrical & Electronic Engineering

FRP Functional Reactive Programming

DSL Domain Specific Language

IDE Integrated Development Environment

IPC Inter-process Communication

NPM Node Package Management

JIT Just in Time

xii

List of Figures

2.1 Schematic Circuit Editor. Image credits:[1]. 4

2.2 Waveform Simulation. Image credits:[1]. 4

2.3 The Compilation Structure of Issie. Image credits[9]. 5

2.4 Fable Electron Application. Image credits:[9]. 7

2.5 MVU Interactions in the Elmish Architecture. Image credits:[7]. 8

4.1 Counter App . 18

4.2 Backing Control and Update. Image credits[45] . 19

4.3 Backing Control Replacement. Image credits[45] 20

4.4 Avalonia Application Architecture. Image credits:[48]. 21

4.5 Issie Context Menu Rendering Process . 22

4.6 Avalonia Context Menu Rendering Process . 23

5.1 Demo App on Windows Platform . 28

5.2 Issie Avalonia . 32

6.1 Eletron Developer Tool Frame Record . 38

6.3 Render Time Monitoring . 39

6.4 Memory Snapshot . 40

7.1 Performance Comparison on Different Project Sizes 43

7.2 Performance Comparison on Different Sheet Display 43

7.3 Performance Comparison on Different Component Interacting 44

7.4 Performance Comparison with Time Breakdown 45

7.5 Performance Comparison on Simulator . 46

xiv

1

1
Introduction

Issie, designed for digital circuit design and simulation, targets students and hobbyists eager to

learn Digital Electronics in a user-friendly way. Developed at Imperial College London, Issie

leverages F#[3] for its core functionality, creating a cross-platform application within the Web

ecosystem.

The tech stack of Issie is complex, combining web and .NET technologies which can be chal-

lenging for new developers to grasp. It primarily uses F# with an Model-View-Update (MVU) [4]

architecture, trans-compile via Fable[5] to utilize Electron.JS[6] creating a cross-platform desktop

application that makes system-level interaction.

Transitioning to a .NET cross-platform framework could enhance Issie by streamlining the

toolchain and boosting performance and maintainability.

This project aims to assess the current Issie tech stack and .NET ecosystem alternatives, identi-

fying a suitable Graphic User Interface (GUI) framework and Domain Specific Language (DSL) on

.NET that preserves Issie’s essential functionalities and coding style. We will execute a structured

port to this new technology stack, noting platform differences and challenges encountered during

the transition. The project will culminate in a comprehensive performance evaluation to analyze

the differences and determine the feasibility and value of porting an application with 42k lines of

code.

1

2 CHAPTER 1. INTRODUCTION

2

2
Background Research

Contents
2.1 Issie . 3

2.1.1 Web Ecosystem . 5
2.1.2 Functional Programming . 6
2.1.3 MVU Architecture . 7

2.2 The .NET Re-implementations . 9
2.3 Summary . 10

To lay the groundwork for this project’s exploration and transformation, we begin with an

overview of Issie’s current functionalities and technology stack. This introduction highlights the

existing framework’s strengths and limitations, clarifying why we are considering transitioning to

a new stack. This sets the stage for understanding the potential enhancements and innovations a

new GUI framework could offer Issie.

2.1 Issie

Issie is designed to be beginner-friendly and guide users toward their goals via clear UI signposting,

error messages that explain how to correct errors, and visual clues. It is intuitive to use with small

single-sheet circuits and also highly productive in debugging complex Central Processing Unit

(CPU) designs made from 50 sheets and hundreds of thousands of components. The motivation

for Issie was the observation that during digital lab work in Electrical & Electronic Engineering

(EEE) courses, previously, more time was spent learning to use (or cope with subtle bugs in) large

commercial hardware design tools than learning digital design. [1]

2

4 CHAPTER 2. BACKGROUND RESEARCH

Figure 2.1: Schematic Circuit Editor. Image credits:[1].

Figure 2.2: Waveform Simulation. Image credits:[1].

Issie is predominantly coded in F#, utilizing an MVU architecture derived from the Elmish[7]

library. This F# code is subsequently transpiled into JavaScript[8] using the Fable compiler.

Following this, Electron.JS is employed to transform the resulting web application into a cross-

platform desktop application, and it enables the application to interact with platform-specific

Application Programming Interface (API), such as file system access.

2

2.1. ISSIE 5

Figure 2.3: The Compilation Structure of Issie. Image credits[9].

The selection of this particular technology stack for Issie is driven by various factors. Primarily, the

well-established nature of web ecosystems offers access to robust libraries and consistent support

for multi-platform compatibility. Additionally, using a statically typed functional programming

language offers significant advantages in state management and maintenance. The subsequent

sections will delve into a detailed explanation and justification for the choice of web ecosystem 2.1.1

combining the MVU paradigm 2.1.3 in Issie’s development.

2.1.1 Web Ecosystem

Issie’s core architecture leverages the versatile Electron.JS framework, a Node-based platform

inherently designed for multi-platform compatibility. This architecture choice provides several

key benefits:

• Cross-Platform Compatibility[10]: Electron.JS enables Issie to operate seamlessly across

various operating systems including Windows, Linux, and MacOS, which is crucial for its

diverse user base of students and academic staff.

• Open-Source Foundation: Electron is open-source under the MIT license, aligning well

with Issie’s distribution under the GPLv3[11] license. This facilitates free usage and con-

tributes to a community-driven development approach.

• Popularity: Electron’s widespread adoption and recognition ensure a robust support com-

munity and extensive documentation, making it easier to maintain and enhance the applica-

tion over time.

• Local Execution Advantages: Unlike standard web applications confined to browser capa-

bilities, Electron allows Issie to leverage deeper system integration and richer functionalities,

enhancing the overall user experience while maintaining web-like agility.

2

6 CHAPTER 2. BACKGROUND RESEARCH

These attributes of the Electron.JS framework and the web-based ecosystem not only fulfill but

enhance Issie’s operational requirements, ensuring robust performance and broad accessibility.

In Issie, Electron architecture divides into two primary processes: the main program and

the renderer. The main program handles startup procedures and engages in low-level machine

I/O operations utilizing Node.JS[12] and native APIs. In contrast, the renderer, powered by

Chromium[13], takes charge of the application’s core functionalities and user interface, including

crucial tasks like simulation and component rendering. This bifurcation facilitates a cleaner sep-

aration of concerns within the application architecture, offering distinct advantages in managing

application logic. However, this complexity can also pose challenges, which we will explore in depth

in the subsequent chapter 4.

Furthermore, Electron’s architecture inherently requires significant memory resources, which

can impact performance. Additionally, JavaScript’s non-strict type system[14] often complicates

the development process, pointing to the potential benefits of integrating a more strictly typed

programming language. These considerations set the stage for the next section 2.1.2, where we

discuss enhancements to address these limitations.

2.1.2 Functional Programming

F# is a strongly typed Functional programming language and was chosen as the main programming

language for Issie for its great features to build robust and maintainable code such as:

Understanding and Maintenance F#’s functional nature, where functions transform im-

mutable data, simplifies the maintenance process. This is particularly advantageous over object-

oriented code, as it reduces concerns about state management. Refactoring is often as straightfor-

ward as altering types and adhering to compiler guidance for necessary code adjustments.[15]

Static type The F# compiler rigorously enforces type correctness and thorough consideration of

all scenarios in pattern matching. This significantly reduces the likelihood of bugs. Consequently,

code written in F# tends to function correctly on the first try, effectively counterbalancing the

limitations encountered with JavaScript in Web ecosystem.[16]

Testing Efficiency Testing in F# is straightforward. Functions are tested by inputting data

and verifying if the output aligns with the expected results. This process eliminates the need to

manipulate the system into specific states for testing, streamlining the development workflow.[17]

2

2.1. ISSIE 7

Educational Alignment F# serves as the language of choice for high-level programming courses

at Imperial College. This allows students to continuously contribute to the project in coursework

and projects, meanwhile practicing their skills in functional programming, software development,

and circuit simulation.

To seamlessly integrate F# into the web-based ecosystem of Electron, selected for Issie, the

Fable compiler plays a pivotal role. Fable effectively bridges the gap between F# and the web

environment by converting F# code into JavaScript. This transpilation allows the F# codebase

to be compiled as a multi-platform application within the Electron framework, thereby leveraging

the advantages of both F# and web technologies.[18]

Figure 2.4: Fable Electron Application. Image credits:[9].

The transcompilation process depicted converts F# code into an Electron application by first

using the Fable compiler to transpile the F# source files into JavaScript. These JavaScript files,

along with associated assets like CSS and images, are then bundled together using Webpack, a

module bundler that optimizes and packages web assets. The bundled code is integrated into the

Electron framework, which allows for cross-platform desktop application development using web

technologies. This Electron application can then interact with the operating system’s file system

and be distributed to users as a native desktop application.

2.1.3 MVU Architecture

Utilizing the F# programming language in the development of user interfaces is greatly enhanced by

leveraging the Elmish library. Elmish empowers developers to harness the capabilities of Functional

Reactive Programming (FRP)[19], a paradigm well-suited for UI design and creation. Inspired by

the Elm programming language, Elmish adheres to the core FRP concepts but extends them within

the context of F#, a language known for its power and versatility.

2

8 CHAPTER 2. BACKGROUND RESEARCH

At the heart of Elmish is the Model-View-Update (MVU) architecture, a pattern that is a great

practice of FRP paradigm and particularly effective for structuring user interfaces in applications

and has gained popularity in the realm of functional programming. Originally popularized by the

Elm language for web applications, MVU has been effectively adapted for F# through libraries like

Elmish. This architecture facilitates the development of intuitive and responsive UIs by maintaining

a clear separation of concerns between the model (data), the view (UI representation), and the

update (state changes), making it an ideal choice for structuring user interfaces in F# applications.

Figure 2.5: MVU Interactions in the Elmish Architecture. Image credits:[7].

• The model is defined as an F# record. It encapsulates the application’s state.

• The view function uses the model to create a virtual Document Object Mode (DOM), which

Elmish renders to the actual DOM in web applications or to the GUI in desktop applica-

tions. The dispatch function is used to send messages to the update function based on user

interactions or other events

• The update function takes a message and the current model, then returns a new model.

Elmish ensures that this function is pure – it does not mutate the model directly but instead

returns a new instance of the model with any updates applied.

In Issie, more than 60 modules are implemented as a single component Elmish MVU application.

This is the simplest type of Elmish application where all state is contained in a single Model type

and there are no separate React[20] components with their own internal state. Although Elmish

2

2.2. THE .NET RE-IMPLEMENTATIONS 9

uses a React DOM (React has a virtual DOM that makes updates more efficient) developers can

usually ignore React and write UI functions as though the DOM was the equivalent HTML[21].

Functional Component

Despite Fable.Elmish’s excellent encapsulation of React components, there are still some complex

aspects to understand about the Issie rendering process, particularly regarding wire and symbol

component rendering. Functional components are introduced [22], which differ from the pure View

function mentioned earlier. Unlike the Virtual DOM, which compares and updates every time,

functional components persist within the Virtual DOM and only update when the properties of the

function change. This design ensures very efficient rendering by skipping unchanged components

in the DOM.

The efficient use of React also brings the primary challenge in transitioning Issie to a .NET

cross-platform desktop UI, which requires achieving efficient SVG rendering for schematics while

caching static objects without compromising the efficacy of the MVU code structure that has

proven highly effective.

2.2 The .NET Re-implementations

The sections above outline the tech stack used by Issie, and they have been well The sections

above detail Issie’s well-established tech stack, which has been effectively implemented and tested

over the years. Despite its proven reliability and user-friendliness, there is potential for further

enhancement.

.NET, an open-source platform developed by Microsoft, supports a variety of programming

languages including C#[23], F#, and Visual Basic[24], and caters to diverse applications across

web, mobile, desktop, gaming, and IoT platforms. Transitioning Issie to a modern cross-platform

desktop UI with .NET could address existing limitations and significantly enhance its capabilities.

2

10 CHAPTER 2. BACKGROUND RESEARCH

Criterion Web Ecosystem (Electron) .NET Platform

Development Languages JavaScript, HTML, CSS C#, F#, VB

Cross-platform Yes Yes

Tool Chain Complex Simple

Community Support Excellent Excellent

Resource Usage High Moderate

Simpler Tool Chain Transitioning from a Fable-Electron trans-compile project to Avalonia sim-

plifies the development and debugging toolchain by offering a unified .NET-centric environment,

streamlining both the build process and debugging. This move eliminates the complexity of nav-

igating between F#, JavaScript, and Electron, allowing direct use of .NET tools, libraries, and

Integrated Development Environment (IDE) without the overhead of transpilation. Overall, adopt-

ing Avalonia fosters a more efficient, straightforward development process, fully integrated into the

.NET ecosystem.

Better Performance As a native implementation of desktop applications, .NET is known for

its performance, compared to the Electron-based application it should bring a certain level of

improvement, by leveraging the .NET runtime’s optimizations, reducing the application’s resource

consumption compared to the Electron’s embedded Chromium and Node.js runtime [25].

2.3 Summary

In this background section, we have explored Issie’s existing architecture and assessed its strengths

and weaknesses, pinpointing issues such as a complex toolchain, significant memory consumption,

and various performance challenges. We recognized the benefits of maintaining the MVU structure

and using the F# language, which we intend to preserve in our forthcoming requirements section 3.

These insights justify our decision to transition to a fully .NET-based technology stack, aiming

to address and improve these critical areas. In the analysis section 4, we will discuss potential

solutions to overcome these drawbacks effectively.

3

3
Requirement Capture

Contents
3.1 Technical Requirements . 11
3.2 Functionality Requirement . 12
3.3 Conclusion . 14

This chapter outlines the essential requirements for the re-implementation, focusing on selecting

a new technology stack and preserving core functionalities. Initially, we must identify a tech

stack that can deliver the benefits outlined in the previous section 2.2. Furthermore, we aim to

comprehensively catalog Issie’s existing functionalities to ensure their continuation and effective

implementation in the new system.

3.1 Technical Requirements

As an open-source project designed for developers, it is imperative to maintain a coding style and

logic that are consistent with the original, while ensuring the new technology meets or exceeds

the advantages of the existing Web ecosystem 2.1.1. Hence, the new tech stack should fulfill the

following requirements:

• Tech Stack Compatibility: It is crucial to preserve our use of functional programming

and the MVU architecture to ensure seamless transition and maintainability.

• Performance with SVG Rendering: The chosen UI framework must be capable of ef-

ficiently managing SVG rendering. The focus should be on performance enhancements,

3

12 CHAPTER 3. REQUIREMENT CAPTURE

particularly through effective object caching in the schematic editor.

• Cross-Platform Compatibility: Ensuring consistent functionality across various operat-

ing systems is essential for enhancing Issie’s usability and user reach.

• Developer Ecosystem and Support: A strong and growing developer community is

vital. The new technology should support a modern and flexible architecture to facilitate

easier maintenance and troubleshooting.

3.2 Functionality Requirement

We can divide Issie’s specific functionalities into different modules and then assess the necessity

and difficulty of the transition.

Table 3.1: Issie Module Porting Difficulty Assessment

Module Description Difficulty Importance

DrawBlock Circuit rendering and interaction High High

Simulator Simulation Logic and Interface Medium High

File IO File interaction with saved sheets Minimal High

General Interface Various UI elements in application Medium Medium

After accessing each module of Issie, there are two crucial modules required for a systematic

evaluation of the new tech stack while requires a significant amount of work, which are DrawBlock

and Simulator :

The DrawBlock module works on all the interactions with sheets, wire, and symbols, providing

the most crucial functionality of Issie as a CAD application and a key performance evaluation

factor in the rendering aspect.

The simulator consists of mostly logical calculation with minimal interaction with GUI, it should

be easy and crucial for porting since it provides a core evaluation metric, the simulation speed.

The step-wise simulation function is another primary choice of porting to achieve a complete move

deliverable and straightforward representation of simulation.

Combining basic menu and popup GUI, file access and management, we now have a full list of

requirements of functionality at this stage below:

3

3.2. FUNCTIONALITY REQUIREMENT 13

Table 3.2: Functionality Requirement Summary

Module Block Functionality Category

Drawblock Sheet Render circuits Rendering

Zoom canvas Interactive

Drag canvas Interactive

Wire Render wire with different widths and labels Rendering

Automatic routing Arithmetic

Connect/disconnect from port Interactive

Symbol Render all Issie symbol types Rendering

Move symbols Interactive

Zoom and rotate symbols Interactive

Copy symbols Interactive

Multiple symbol selection Interactive

Overlap detection Arithmetic

Simulation Simulator Read in circuit SystemIO

Step/Waveform output Arithmetic

Step Simulation Basic display of step, input, output Rendering

Input/Step Modification Interactive

Save/Load Simulation Config SystemIO

Waveform Simula-

tion

Waveform Render Rendering

Wave Selection Interactive

RAM selection Interactive

FileIO Project Read in demo project SystemIO

Read in legacy project SystemIO

Save project SystemIO

Sheet Import Sheet SystemIO

Copy/Paste Sheet SystemIO

General

Interface

MainView Top Menu for project management Interactive

Catalogue menu for symbol creation Interactive

Continued on next page

3

14 CHAPTER 3. REQUIREMENT CAPTURE

Module Block Functionality Category

Simulation menu Interactive

PopUP Project Popup window when app start Interactive

Notifications Rendering

Simulation Related Popup Interactive

There are four main categories of functionality that need to be implemented, with interactive

features and rendering constituting the primary workload of the porting process. File I/O will also

require some time to adapt, while arithmetic code blocks should be directly portable. A detailed

process and solutions for each category are discussed in sections 5.2 and 5.4.

3.3 Conclusion

The requirements outlined serve as both a blueprint for the deliverables expected from the project

and a guide for the implementation process detailed in Chapter 5. Additionally, they provide

crucial context for understanding the design decisions discussed in Chapter 4.

44
Analysis and Design

Contents
4.1 Availability of GUI Frameworks . 15

4.1.1 DSL and Wrapper . 17
4.2 Tech-stack Comparison . 20

4.2.1 Application Life Time . 20
4.2.2 Dependency Management . 23

4.3 Conclusion . 25

Building on the established technical and functional requirements in Chapter 3, we are set

to select an appropriate GUI framework from the .NET ecosystem. We will then analyze its

characteristics and compare them with those of the previous setup to gauge potential performance

improvements. This will help set the stage for further detailed test and evaluation.

4.1 Availability of GUI Frameworks

In transitioning to the .NET ecosystem while maintaining the MVU structure and the use of

F#, several factors need to be considered. These factors are detailed in the previously listed

requirements (see Section 3.1).

Among the potential candidates for .NET cross-platform frameworks are QTSharp[26], WPF[27],

and Avalonia[28]. These frameworks are generally designed for multi-platform support and per-

form SVG rendering using a XAML[29]-based approach. The primary aspects to evaluate include

compatibility with F# and the MVU architecture, alongside other criteria such as popularity,

openness, and cross-platform capabilities:

4

16 CHAPTER 4. ANALYSIS AND DESIGN

Framework F# Support MVU Support Open Source Cross-Platform

Avalonia 3 3 3 3

WPF 3 3 3 7

UNO Platform 7 7 3 3

.NET MAUI 3 3 3 3

QtSharp 7 7 3 3

Table 4.1: Evaluation of .NET Cross-Platform Frameworks

Avalonia: Avalonia is increasingly favored in the F# community due to its compatibility with

F# principles[30]. It supports the MVU architecture, especially when used with libraries like

Avalonia.FuncUI[31] or Fabulous.Avalonia[32], enabling straightforward implementation of MVU

patterns in F# applications.

WPF (Windows Presentation Foundation): While WPF can be used with F#, it is primar-

ily designed for C#/XAML, making its integration with F# less intuitive, implementing MVU

architecture using Elmish.WPF[33] is possible but not widely adopted. Its primary limitation is

its exclusive support for the Windows platform[34].

Uno Platform[35]: The Uno Platform is versatile, offering cross-platform capabilities with ex-

ceptional mobile support[36]. However, its support for F# is somewhat basic, making it less ideal

for projects that require deep integration with F# or extensive use of the MVU pattern.

MAUI (Multi-platform App UI)[37]: Developed by Microsoft, MAUI is an evolution of Xa-

marin.Forms and a key part of the .NET 6 initiative[38]. It aims to provide a unified framework

for building cross-platform applications but is still more specialized in mobile development. While

it supports F#, it’s still maturing regarding its integration with F# programming and MVU

patterns.[39]

QtSharp: QtSharp bridges the Qt application framework with the .NET environment, predom-

inantly targeting C# for .NET bindings. Due to its roots in C++, it’s less aligned with F#

programming paradigms and doesn’t inherently support the MVU pattern. This makes QtSharp

more suitable for projects prioritizing C++ and .NET interoperability over native F# development.

Based on the comparison above, only Avalonia and MAUI provide good support for F# and MVU

structure while providing cross-platform ability.

Avalonia UI and MAUI represent two distinct approaches to cross-platform GUI framework im-

4

4.1. AVAILABILITY OF GUI FRAMEWORKS 17

plementation. Avalonia employs a custom rendering engine that ensures uniformity in UI elements

across all platforms [40]. This consistency is pivotal for applications that require a standardized

user experience regardless of the operating system. In contrast, MAUI leans heavily towards mobile

platforms and utilizes Blazor for Linux support, which is not inherently part of its core framework

but rather a community-driven extension [41].

Given these differences, Avalonia UI is the preferable choice for our needs. Its comprehensive

platform support, including Linux, which is essential for Issie, along with its strong and active

community [42], positions it as the more suitable and reliable framework. Avalonia’s consistent

rendering engine promises a seamless user experience across desktop environments, which is a

critical requirement for our project. Conversely, MAUI’s primary focus on mobile platforms and

reliance on community solutions for Linux support may not align as effectively with our project’s

goals for a cross-platform desktop application.

4.1.1 DSL and Wrapper

There are two approaches to implementing the MVU structure on Avalonia, Avalonia.FuncUI[43],

and Fabulous.Avalonia[32], both libraries that facilitate the use of the MVU architecture in Avalonia

applications as wrapper layer.

FuncUI is a library designed to build Avalonia UIs using a functional approach. It offers a

DSL[44] for defining UI elements in F#. FuncUI provides a more direct and functional way of

defining UI elements, aiming to keep everything within F#. It allows for a concise and type-safe

definition of UI, leveraging F#’s strong typing system.

Fabulous provides MVU wrapper support for various .NET GUI frameworks including Avalonia

and MAUI, similar to FuncUI it made a custom DSL which the following section will make a

comparison on.

DSL comparison:

Per the specifications in Section 3.1, the new implementation must retain a similar MVU struc-

ture to the original Issie to facilitate a straightforward and efficient porting process. To evaluate

how each platform aligns with this requirement, we will compare their MVU implementations and

DSL using the button of a simple counter app example:

4

18 CHAPTER 4. ANALYSIS AND DESIGN

Figure 4.1: Counter App

As introduced in Section 2.1.3, the basic view function in Fable.Elmish (used in Issie) takes the

model state of the application and dispatch functions as props, and then returns a ReactElement:

1 let view model dispatch: ReactElement =

2 div [

3 button [

4 OnClick (fun _ -> dispatch Increment)

5 ...

6]

7]

The sample code of FuncUI below shows a similar overall structure, only the function returns IView

(XAML view component) instead of ReactElement (HTML-based)

1 let view model dispatch: IView =

2 StackPanel.create [

3 Button.create [

4 Button.onClick (fun _ -> dispatch Increment)

5]

6 ...

7]

And the sample from Fabulous.Avalonia is similar, a difference would be that the update function

(dispatch) is not passed as a parameter. This abstraction, while making the code neater, could

reduce clarity for those used to seeing how actions are passed up to the update function via a

dispatch function. It might make it harder to trace the flow of data and control, especially in

complex applications.

4

4.1. AVAILABILITY OF GUI FRAMEWORKS 19

1 let view model: Fabulous.Avalonia.View =

2 VStack() {

3 Button("Increment", Increment)

4 ...

5 }

Performance:

Though both libraries implement a FRP style DSL for Avalonia, Avalonia.FuncUI implements

a patching mechanism to optimize the performance [45].

FuncUI views don’t hold a direct reference to their backing Avalonia controls. The view struc-

ture determines the association between a view and its control. If the structure of the view changes

(e.g., a different type of control is now represented in the view hierarchy), the backing control might

also change. FuncUI ensures that the new backing control is appropriately patched with all the

attributes set as specified in the view, maintaining the consistency and integrity of the UI.

Figure 4.2: Backing Control and Update. Image credits[45]

If the type of the view in the new structure does not match the type of the backing control,

FuncUI creates a new backing control to replace the old one. The new control is then initialized

and patched with the appropriate attributes as defined in the view.

4

20 CHAPTER 4. ANALYSIS AND DESIGN

Figure 4.3: Backing Control Replacement. Image credits[45]

The life cycle of a FuncUI view excels due to its seamless integration with Avalonia controls,

streamlined updates via patching mechanisms, and adaptability in handling view structures. This

configuration facilitates dynamic and responsive user interfaces that can effectively mirror appli-

cation state changes.

In comparison, while Fabulous offers guidance and APIs aimed at enhancing view binding and

update efficiency [46], it falls short in terms of integration ease and implementation simplicity,

primarily due to its insufficient documentation. These limitations make it a less viable option for

projects requiring straightforward and well-documented tools.

Given FuncUI’s better community support superior documentation and the aforementioned

technical advantages, Avalonia.FuncUI emerges as the superior choice for our GUI wrapper. Its

comprehensive features align well with our need for an efficient, maintainable, and responsive UI

framework, making it the optimal selection for implementing high-performance user interfaces.

4.2 Tech-stack Comparison

The final technology combination for the .NET version of Issie would be Avalonia and Avalo-

nia.FuncUI, we can now have an overall review of this tech stack and how the application will be

built and run.

4.2.1 Application Life Time

The image 4.4 below depicts the architecture of AvaloniaUI[47]. The core library, AvaloniaUI,

provides fundamental UI components and services like bindings, logical/visual tree structures,

4

4.2. TECH-STACK COMPARISON 21

renderers, controls, and styles, based on .NET Standard 1.1 for wide compatibility.

Figure 4.4: Avalonia Application Architecture. Image credits:[48].

Avalonia.XAML is the part of the framework that handles XAML processing, enabling devel-

opers to define UIs in a declarative manner, while Avalonia.DefaultTheme supplies the standard

styles and templates for the UI controls.

The architecture abstracts underlying platform specifics through interfaces like IRuntimePlat-

form, IWindowingPlatform, and IRenderingPlatform, allowing the framework to run on different

operating systems and utilize various graphics engines. Implementations of these interfaces adapt

AvaloniaUI to work with .NET/Mono, .NET Core, Xamarin, and different windowing and ren-

dering systems like Win32, GTK#, Direct2D, Skia, and Cairo, enabling a unified development

experience across desktop and mobile platforms.

In contrast to Avalonia’s single-process approach, Electron utilizes a multi-process architecture,

as described in Section 2.1.1. This structure offers several advantages, such as improved security

and isolation between components, but introduces complexities due to the need for Inter-process

Communication (IPC), which can complicate adherence to the MVU paradigm.

An example of this complexity is demonstrated in how Issie handles a right-click to trigger a

context menu, shown in Image 4.5 below:

4

22 CHAPTER 4. ANALYSIS AND DESIGN

Figure 4.5: Issie Context Menu Rendering Process

This process involves an IPC message sent from the Update Module to the Main process and

then directly attached to the window, bypassing the model update. Such operations indicate the

challenges posed by Electron’s multi-process architecture in maintaining a smooth MVU flow.

Conversely, Avalonia’s architecture, which opts for a single-process design, aims to ensure uni-

formity across platforms and simplify development. This approach maintains a consistent single-

threaded model, enhancing cross-platform consistency and reducing the complexities associated

with IPC. This streamlined architecture facilitates a more MVU-compliant approach to UI up-

dates and interactions.

If we were to reimplement the same context menu feature using Avalonia.FuncUI, the execution

logic would be as follows:

4

4.2. TECH-STACK COMPARISON 23

Figure 4.6: Avalonia Context Menu Rendering Process

This Avalonia implementation provides a clearer and more logically sequential process that fits

better within the MVU paradigm and simplifies code complexity. Similar benefits emerge when

streamlining the .NET toolchain, which we will explore in the next section 4.2.2, demonstrating

further advantages in complex application scenarios.

4.2.2 Dependency Management

The nature of the fable compiler brought up difficulties in library management, two package man-

agement tools are used NuGet and Node Package Management (NPM) which produce separate

dependency lock files (package.json and paket.dependencies)

4

24 CHAPTER 4. ANALYSIS AND DESIGN

Package Description

NuGet Packages

Fable.Browser.Css Fable bindings for CSS.

Fable.Electron Fable bindings for Electron APIs.

Fable.Elmish Core library for Elmish, supporting Elmish.Debugger,

Elmish.HMR, and Elmish.React.

Fable.Import.Node Fable bindings for Node.js.

Fable.Browser.Dom Fable bindings for DOM manipulation.

Fable.SimpleJson Simplifies JSON serialization/deserialization.

Fable.Promise Provides F# async programming with JavaScript promises.

Fable.React Fable bindings for React.

FSharp.Core Core library for F#.

Fulma Fable bindings for the Bulma CSS framework

Thoth.Json &

Thoth.Json.Net

JSON encoder/decoder focused on performance and .NET

interoperability.

... ...

npm Packages

@electron/remote Provides remote procedure calls in Electron.

bulma Modern CSS framework based on Flexbox.

electron Core framework for building cross-platform desktop apps.

electron-builder Packages and builds Electron apps.

react & react-dom Building user interfaces and handling DOM interactions.

react-router-dom DOM bindings for React Router.

webpack A module bundler for JavaScript.

babel-loader Integrates Babel transpiler with webpack.

... ...

This design also makes it hard to add new packages that we need to consider the compatibilities

with fable and JS when involving interaction of DOM. The Avalonia project would have much

simpler dependencies for similar implementation.

4

4.3. CONCLUSION 25

Package Description

Avalonia A cross-platform XAML-based UI framework.

Avalonia.Desktop Extensions for desktop-specific capabilities in Avalonia.

Avalonia.FuncUI Functional-reactive UI framework for F# with Avalonia.

Avalonia.FuncUI.Elmish Elmish integration for state management in Avalonia.Fun-

cUI.

Avalonia.Themes.Fluent Fluent Design System themes for Avalonia.

Avalonia.Fonts.Inter The Inter font family for Avalonia UIs.

Avalonia.Diagnostics Debugging tools for Avalonia development.

Elmish Model-View-Update architecture for F# applications.

Thoth.Json JSON serialization tailored for F# simplicity.

Thoth.Json.Net Thoth.Json integration with .NET’s Newtonsoft.Json.

4.3 Conclusion

In this section, we have detailed our selection of Avalonia and Avalonia.FuncUI from various .NET

technologies, and discussed the improvements that transitioning to a .NET implementation could

bring to Issie with examples. These improvements are primarily in coding paradigms and project

management. Building on the results of this analysis, we will commence the implementation process

in Chapter 5. The subsequent Chapter 6 and 7 will provide a more detailed comparison focused

on the performance aspects of these technological choices.

4

26 CHAPTER 4. ANALYSIS AND DESIGN

55
Implementation

Contents
5.1 Proof of Concept . 27
5.2 Implementation Challenges . 29

5.2.1 DSL Differences . 29
5.2.2 Type System . 30
5.2.3 File Management . 31

5.3 Porting Results . 32
5.4 Further Developments . 35
5.5 Summary . 36

Building upon the technology choices outlined in Chapter 4, the re-implementation of Issie

will commence using Avalonia and Avalonia.FuncUI. Initially, we will develop a proof of concept

application that addresses the primary requirements specified in Chapter 3. This stage will serve

as a foundation for discussing the detailed implementation process, highlighting challenges encoun-

tered, following the assessment of the completeness of the porting effort and guidance for future

development initiatives.

5.1 Proof of Concept

We developed a demo application to validate that our selection of tech stack can fulfill the tech-

nological requirements outlined in Section 3.1: SVG rendering, multi-platform compatibility, and

adherence to the MVU paradigm.

5

28 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Demo App on Windows Platform

SVG Component and Transform

We explored rendering electronic symbols as SVG components within the demo app, leverag-

ing FuncUI DSL. This approach, akin to HTML SVG polygon handling, focused on symbol

generation and UI transformations, including text blocks, lines, and polygons, to ensure

feature parity with Issie’s existing capabilities (see Figure 5.1).

Multi-platform Compatibility

Being built to run across multiple platforms using the .NET framework, the demo verified

the anticipated cross-platform compatibility. This is crucial for maintaining Issie’s usability

across different operating environments.

MVU Compatibility

The implementation adhered strictly to the standard Elmish MVU paradigm, confirming

that our chosen tech stack is well-suited for our architectural goals.

Along with the analysis made in the previous Chapter 4, we can say that the technology

requirement of the project has been validated at this stage, and meanwhile the possibility of

porting Drawblock module at an early stage

Table 5.1: Requirements Validation

5

5.2. IMPLEMENTATION CHALLENGES 29

Technology Assessment

Feature Status

SVG rendering performance X

Multi-platform compatibility X

Tech stack compatibility X

Developer ecosystem X

Functionality Block

Module Status

DrawBlock X

Simulation Pending

FileIO Pending

General UI Pending

This section confirms the viability of the selected technologies, laying a robust foundation for

the full implementation phase.

5.2 Implementation Challenges

This section outlines the primary challenges encountered during the porting. The most signifi-

cant challenge comes from modules directly interacting with the user interface, requiring intricate

conversions between different DSL, and another unexpected challenge comes from the type sys-

tem difference due to the fable trans-compilation. Additionally, compatibility adjustments are

necessary for the remaining parts due to lower-level API differences.

5.2.1 DSL Differences

Many UI components like buttons, input boxes, and tabs require adjustments in property specifi-

cations. For example, the size property in Avalonia.FuncUI accepts integers (e.g., 12) instead of

strings (e.g., ”12px”) used in Fable.Elmish. These properties are often deeply integrated into the

codebase and are also serialized in the schematic project files.

To facilitate the porting process and ensure backward compatibility, we introduced the Avaloni-

aHelpers.fs module. This module contains functions to bridge DSL differences, such as converting

5

30 CHAPTER 5. IMPLEMENTATION

SVG component specifications from strings to a list of Point data types. In section 5.4 the guidance

for further development covers more detail of how to convert DSL in a standardized manner.

Still, there are bigger differences in tech stack and DSL which we can’t replace directly, as we

mentioned in the Analysis section with context menu example4.5, when there is an interaction

with the main process of the electron, a full re-implementation is inevitable.

In Issie key and mouse event binding are made through electron (web) API like document.on-

keydown.

1 let displaySvgWithZoom model dispatch ...=

2 document.onkeydown <- (fun key ->

3 dispatch <| (ManualKeyDown key.key)

4 ...

This is not a standard way of handling hardware subscriptions in MVU principal, and it is also

impossible to implement directly in Avalonia.FuncUI, instead of a more standard practice used

here

1 let subscriptions _ =

2 let keyDownSub (dispatch: Msg -> unit) =

3 this.KeyDown.Subscribe(fun eventArgs ->

4 dispatch (Sheet (SheetT.Msg.ManualKeyDown (eventArgs

.Key.ToString())))

5)

6 [[nameof keyDownSub], keyDownSub]

7

8 Program.mkProgram init update view'

9 |> Program.withHost this

10 |> Program.withSubscription subscriptions

5.2.2 Type System

The type system encountered several unexpected challenges during the porting process, as illus-

trated by the following code snippet from Issie. This code block, which generates a label for

5

5.2. IMPLEMENTATION CHALLENGES 31

repeated component names using the Regex API, consistently triggers a type exception error in

line 3 when ported to Avalonia.

1 let index = Regex.Match(str, @"\d+$")

2 match index with

3 | null -> 0

4 | _ -> int index.Value

Upon reviewing the .NET documentation on Regex, it became clear that Regex.Match does

not return a null value but rather a Match type object. The original code functioned in Issie due

to Fable compiler’s type reflection, which does not strictly enforce type safety, unlike the standard

.NET framework.

Another example involves the pending attribute of the application model, which is a list of

Msg pending execution. This attribute is routinely compared during each MVU execution cycle.

However, it includes functions and union types that fail .NET’s equality checks, making them

incompatible without Fable’s transcompilation.

Similar issues arose in other cases where type-sensitive operations were required, such as using

the unbox API. Solutions to these type incompatibilities varied, but generally involved adding

type constraints and making appropriate conversions.

These challenges underscore the potential benefits of re-implementing in Avalonia, particularly

in terms of maintainability and adherence to the standard practices of the MVU paradigm and

F# programming. This approach not only resolves type safety issues but also aligns with more

conventional coding practices in .NET.

5.2.3 File Management

Adapting file management functionalities to work with Avalonia involves several changes, particu-

larly in how JSON data is handled:

• API Replacement: The Electron API used for reading and writing circuit schematic files

(DMG) is replaced with an equivalent Avalonia API, which is relatively straightforward.

• JSON Parsing: The transition from Fable.SimpleJSON to Throth.JSON necessitated the

development of custom encoders and decoders. These custom solutions ensure that legacy

5

32 CHAPTER 5. IMPLEMENTATION

schematic files remain compatible with the new system by accommodating differences in how

map and list data types are handled.

5.3 Porting Results

After addressing the issues outlined earlier, we systematically transitioned from Fable.Elmish to

Avalonia. The re-implementation of Issie on Avalonia now features a user-friendly interface and

supports basic functionalities such as circuit modification and simulation, as illustrated in Fig-

ure 5.2.

Figure 5.2: Issie Avalonia

In terms of project management and future development, we continued using the package

management tool Paket and retained the original directory structure and filenames to facilitate

easy identification of corresponding components. Currently, of the 42k lines of code across 90 major

F# files, 62 files have been successfully ported to Avalonia, representing 22k lines of operational

code.

Unfinished parts, as listed in Table 5.2, primarily include two other simulation modes and some

interactive functions for circuits and canvas. Detailed guidance for addressing these remaining

areas and future development will be discussed in the following section (Section 5.4).

5

5.3. PORTING RESULTS 33

Table 5.2: Functionality Completion Summary

Module Block Functionality Category Complete

Drawblock Sheet Render circuits Rendering X

Zoom canvas Interactive X

Drag canvas Interactive Pending

Wire Render wire with differ-

ent widths and labels

Rendering X

Automatic routing Arithmetic X

Connect/disconnect

from port

Interactive Pending

Symbol Render all Issie symbol

types

Rendering X

Move symbols Interactive X

Zoom and rotate sym-

bols

Interactive Pending

Copy symbols Interactive X

Multiple symbol selec-

tion

Interactive X

Overlap detection Arithmetic X

Simulation Simulator Read in circuit SystemIO X

Step/Waveform output Arithmetic X

Step Simula-

tion

Basic display of step, in-

put, output

Rendering X

Input/Step Modification Interactive X

Save/Load Simulation

Config

SystemIO Pending

Waveform

Simulation

Waveform Render Rendering Pending

Wave Selection Interactive Pending

RAM selection Interactive Pending

FileIO Project Read in demo project SystemIO X

Read in legacy project SystemIO Pending

Continued on next page

5

34 CHAPTER 5. IMPLEMENTATION

Module Block Functionality Category Complete

Save project SystemIO X

Sheet Import Sheet SystemIO Pending

Copy/Paste Sheet SystemIO Pending

General

Interface

MainView Top Menu with project

management functional-

ities

Interactive X

Catalogue menu for

symbol creation

Interactive Pending

Simulation menu Interactive X

PopUP Project Popup window

when app start

Interactive X

Notifications Interactive Pending

Simulation Related

Popup

Interactive Pending

5

5.4. FURTHER DEVELOPMENTS 35

5.4 Further Developments

Referring to the previous section 5.3 the structure of code and file are maintained the same at my

best, for the good of the previous developer of Issie or the new developer wants a reference from

the original Issie.

Meanwhile, different from the list of functionality 5.2 there is a list of files A.1 that have been

or have not been ported which is put in the appendix and project documentation for developer

reference.

The process of porting a new module would be: Identify a module or function in the list of

functionality 5.2, which refers to the list of files that contains direct or indirect interaction of

module, for existing modules there should be a TODO label which contains the identification of

the module it belongs.

A more specific example of porting the wave simulation module is shown below:

1, Find files that directly interact with this module in the file appendix ??, in this case, would

be WaveSim.fs WaveSimHelper.fs and WaveSimSelect.fs which is all in the pending state which

means no file created at this point.

2, For existing upper-level files like MainView.fs check the TODO hint left in the module, each

TODO is labeled with its related module like [WAVESIM].

1 let viewSimSubTab canvasState model dispatch =

2 match model.SimSubTabVisible with

3 | StepSim ->

4 ...

5 | WaveSim ->

6 StackPanel.create [

7 ...

8 // TODO [WAVESIM] The truth table simulation view needs

to be implemented

9 // TruthTableView.viewTruthTable canvasState model

dispatch

10]

11 ...

5

36 CHAPTER 5. IMPLEMENTATION

3, for new files try copy/paste from the original Issie project can be a way to start with, IDE

will identify incompatible parts of code, which are usually missing attributes from other unfinished

modules or DSL differences.

1 let displayUInt32OnWave wsModel (width: int) (waveValues: uint32

array) (transitions: NonBinaryTransition array) : ReactElement

list =

2 ...

Which ReactElement will throw an undefined error because it’s part of Fable.ELmish DSl and

NonBinaryTransition are undefined because they should be imported from another unfinished

module.

4, For undefined attributes, try to check the import first, then try a global search in both

Issie and Issie Avalonia for the part missing. In this case you can find NonBinaryTransition is

a method in WaveSimHelper.fs, the option can be either skip or comment out this part or port

WaveSimHelper.fs at meantime.

5, For DSL difference, a guidance is in project README which includes the basic difference in

DSL, and check Avalonia.FuncUI document basic component declaration, for more sophisticated

interaction try checking the Avalonia API document which would solve the problem most time.

5.5 Summary

In this chapter, we confirmed that the demo application satisfies the extensive technological re-

quirements necessary for large-scale porting. We also identified several challenges encountered

during this process and provided guidance for future developers. These insights offer valuable

guidance not only for the continued development of Issie on Avalonia but also for other projects

utilizing similar technology stacks.

Having implemented a broad range of functionalities, we are now prepared for systematic testing

and evaluation of the two technology stacks. The forthcoming chapter will detail our methodology

for this assessment, as outlined in Chapter 6.

6

6
Test

Contents
6.1 GUI Performance Test . 37
6.2 Simulator Performance Test . 39
6.3 Memory Consumption . 39
6.4 Summary . 40

With a wide array of functionalities now in place, we are equipped to proceed with the system-

atic testing and evaluation of the two technology stacks, this section mainly covers the methodology

used in the testing process and how to get measurements and data for the final analysis and eval-

uation.

6.1 GUI Performance Test

GUI performance is a critical deliverable of this project. We will begin by establishing bench-

marks for GUI testing, followed by a discussion on the tools required for these tests, ranging from

a self-developed tracing module to advanced developer tools available in both Web and .NET

environments for a comprehensive performance comparison.

During a circuit symbol drag interaction, there will be multiple frames rendered, leveraging

developer tools from both Electron and Avalonia, as shown in image 6.1, we can accurately gauge

the rendering layer performance of the GUI. A key metric in these tests is the application’s frame

rate, especially during interaction actions like dragging, which directly reflects the smoothness and

responsiveness.

6

38 CHAPTER 6. TEST

Table 6.1: Manual Render Test Methodology

Description
Sample Selection Uses the EEE1labs test suite, including the full implementation

of the EEP1 CPU and 23 digital logic circuit designs (e.g., ALU,
register file, decoder).

Sample Size Each test case is executed 10 times to minimize variability.
Test Action Evaluates GUI performance through user interactions such as drag-

ging, copying, and selecting multiple components.
Measurement Measures the time for each action using a tracing module, recording

both the execution times of update and view functions and the
overall frame rate using developer tools.

Figure 6.1: Eletron Developer Tool Frame Record

Frame Time: Providing the time each frame takes during interactions with the circuit. Combined

with other information from the developer tools, we can obtain a detailed breakdown of each frame,

including the view and update functions, GUI rendering, and virtual DOM updates.

Update and View Function Time: With the time helper and tracing module now integrated

into the Avalonia re-implementation, we can effectively monitor and compare the performance of

various application modules including model update or view function execution, which are two

of the most crucial components of MVU application performance. Image 6.2a and 6.2b below

demonstrates how tracing is set up in Issie’s developer mode and the corresponding output.

Rendering Time: Beyond the execution time of the view function, additional time is required

for properties and layout rendering by the User Interface (UI) framework. This value is usually

monitored by developer tools frame by frame, as shown in Figure 6.3 below is how the Avalonia

developer tool captures rendering time.

6

6.2. SIMULATOR PERFORMANCE TEST 39

(a) Tracing Options (b) Tracing Output

Figure 6.3: Render Time Monitoring

6.2 Simulator Performance Test

Based on the benchmark and testing module for the simulator implemented by Yujie [49], this

benchmark is designed to compare the simulation speed of the new simulators with the Baseline

simulator, measured in tick × component/second. All designs in EEE1labs are used as the test

suite. This benchmark runs each design for 1000 clock ticks and repeats 10 times, the final score

is the geometric mean of the simulation speed of each design sheet

6.3 Memory Consumption

With the developer tool as shown in image 6.4, we could have a snapshot of application memory

usage at a specific point of execution, which enables us to record the memory consumption of the

heap and overall usage of the app in rendering and simulation test process above.

6

40 CHAPTER 6. TEST

Table 6.2: Simulation Benchmarking Methodology

Description
Realistic Workloads Utilizes EEE1labs test suite for comprehensive testing, including the EEP1

CPU and 23 digital logic circuit designs (arithmetic logic unit, register file,
decoder, etc.).

Sample Size Each test case is run 10 times to minimize random variations, such as those
caused by Just in Time (JIT) compilation.

Test Action Warm-up runs are executed before benchmarking to account for JIT opti-
mizations. The geometric mean calculates speed scores due to significant
variances in simulation speeds among different design sheets.

Figure 6.4: Memory Snapshot

6.4 Summary

In this chapter, we have gone through the testbench and testing tool for GUI rendering, simulator

and memory performance, with these tools we can finally evaluate the overall performance of

project in the following Chapter 7.

7

7
Evaluation

Contents
7.1 Performance . 42

7.1.1 Rendering Performance . 42
7.1.2 Simulation . 46
7.1.3 Memory . 46

7.2 Implementation Evaluation . 47
7.2.1 Tech Stack and Project Management . 47
7.2.2 Implementation Challenges . 47
7.2.3 Functionality Completeness and Future Works 48

7.3 Summary . 48

With all functionality requirements fulfilled, the benchmark established and the testing tool

decided, we can now make a final evaluation of the project. The evaluation phase aims to validate

the new implementation’s effectiveness and highlight possible improvements over the original Issie

application, evaluate the completeness of current porting, and difficulties of further works, and

conclude the necessity of completing a full port to Avalonia.

7

42 CHAPTER 7. EVALUATION

7.1 Performance

7.1.1 Rendering Performance

Utilizing the methodology detailed in Section 6.1, we began by comparing the frame rates between

the Electron and Avalonia applications, as summarized in Table 7.1:

Table 7.1: Frame Rate Comparison for Electron and Avalonia

Operation Electron Frame Rate (fps) Avalonia Frame Rate (fps)
Single Component Drag 33.12 20.01
Single Component Copy 32.31 22.83
Multi Component Drag 49.12 17.82
Multi Component Copy 51.87 18.98

To provide further insight, we converted these frame rates into the time taken for each frame,

illustrating the duration required for the application to complete an MVU structure update and

rendering cycle, detailed in Table 7.2:

Table 7.2: Frame Time Comparison for Electron and Avalonia

Operation Electron Frame Time (ms) Avalonia Frame Time (ms)
Single Component Drag 18.17 30.19
Single Component Copy 18.48 30.95
Multi Component Drag 20.36 56.12
Multi Component Copy 19.29 52.69

This data demonstrates that Electron’s Issie implementation offers superior responsiveness dur-

ing component interactions, aligning more closely with user perceptions of component movement.

However, not all sheets perform at similar speeds. Some sheets in the EEP1 sample set showed

better performance, hinting at underlying factors affecting this discrepancy. Consequently, we

conducted additional tests varying the number of displayed symbols and size of loaded projects to

explore the correlation between performance.

The test below is designed to explore the relationship between frame time and loaded project

size. Figure 7.1 depicts the comparative performance of both applications on a smaller scale,

displaying a simple half-adder sheet across different project sizes:

7

7.1. PERFORMANCE 43

Figure 7.1: Performance Comparison on Different Project Sizes

In the scenario of a small circuit displayed, the performance of the two Issie versions is compa-

rable. However, in scenarios such as the final test case with 538 components, Avalonia’s application

shows slower speeds, highlighting the impact of project size on rendering performance, a possible

reason is that even though most of the symbols are not rendered, the larger size of the model would

reduce the efficiency of model update.

As shown in Figure 7.2, increasing the size of the circuit displayed on the sheet leads to a

notable increase in frame time. This degradation in performance in larger sheets could explain the

results observed in Table 7.2, given that our test circuit, EEP1, primarily consists of large circuit

sheets.

Figure 7.2: Performance Comparison on Different Sheet Display

When the complexity of the interaction is increased by adding more components and wires, as

7

44 CHAPTER 7. EVALUATION

illustrated in Figure 7.3, there is again a rise in frame time, providing a clearer demonstration of

the performance issues with multiple component interactions documented in Table 7.2.

Figure 7.3: Performance Comparison on Different Component Interacting

Further Analysis

Based on the observations above, we can conclude that the number of symbols displayed and the

number of symbols interacted with have a major impact on GUI performance in terms of frame

rate, while the overall size of the project has a smaller impact on performance.

To further understand these issues, we conducted a detailed breakdown of each result in Fig-

ure 7.3, by collecting data on the execution times for view and update functions, rendering, and

remaining script execution time in each frame as previously described in Section 6.1. In Figure 7.4,

it is evident that while the number of components interacted with increases, the view function’s

execution time remains stable and close to the Electron app’s performance. However, the rendering

time, although stable, is higher than the Electron app, and there is a significant increase in the

time required for the update function and other script execution.

7

7.1. PERFORMANCE 45

Figure 7.4: Performance Comparison with Time Breakdown

As we can see, the update and other script execution times are crucial in the current case. Two

main aspects can potentially be optimized: the update function and component caching used in

Issie.

Starting with the update function, the re-implementation of Issie on Avalonia primarily modifies

the View part of the original MVU structure. Logical operations in the Update function generally

remain the same. However, while the new View function’s execution time is close to the Electron

app’s, the Update function time accumulates during the test. This behavior is potentially related

to event handling and the message queue of the Avalonia application and will be a critical area for

future improvement.

Regarding component caching, as introduced in Section 2.1.3, the Fable.Elmish app uses React

Virtual DOM and Functional Components, which significantly improve rendering time. In Fun-

cUI.Avalonia, we use a Patching Mechanism (see Section 4.2.1), similar to the concept of Virtual

DOM. For the Function Component, which caches all symbols and wires during the update, we

used FuncUI Component [50] that shares the same idea. However, based on the test results above,

this may not be a mature implementation, indicating a key area for further optimization.

Summary

Currently, the Avalonia implementation of Issie delivers comparable performance in rendering and

interacting with simple circuits. However, in more complex scenarios, achieving a frame rate of

7

46 CHAPTER 7. EVALUATION

around 20fps does not meet our objectives for optimizing Issie’s performance on the new platform.

Based on further analysis and test results, we have identified several potential solutions. Addressing

these performance issues will likely be a central focus for future development and optimization

efforts.

7.1.2 Simulation

As outlined in Section 6.2, simulation performance is evaluated in terms of Ticks*Components per

second, effectively balancing the considerations of time and complexity in the simulation process.

This measure provides a stark contrast to the rendering performance discussed in Section 7.1.1,

where significant improvements have been observed.

Figure 7.5: Performance Comparison on Simulator

As depicted in Figure 7.5, the Avalonia simulator reaches a peak performance of 79,871, signifi-

cantly surpassing the Electron simulator, which achieves only 61.23% of Avalonia’s output. Notably,

both platforms demonstrate a gradual increase in simulation speed initially. This progressive en-

hancement is primarily due to the Just-In-Time (JIT) compiler, which requires a warm-up period

to fully optimize execution speeds. This critical optimization process is instrumental in delivering

the high performance observed in more complex simulation scenarios.

7.1.3 Memory

In terms of memory performance, the ROM space required by the application has not significantly

changed with the transition to Avalonia. However, notable improvements have been observed in

7

7.2. IMPLEMENTATION EVALUATION 47

RAM usage, which are clearly detailed in Table 7.3. We see a 22.3% reduction in the overall RAM

consumption of the application, which includes substantial decreases in both the Simulator and

Managed Heap sizes, reflecting more efficient memory management.

Table 7.3: Memory Performance in MB (Mega Bytes)

Stage
Issie Issie Avalonia

Simulator Heap Overall Simulator Heap Overall
On start 0.8 16.3 190.5 0.6 16.2 152.4

Project Load 1.1 19.8 259.9 0.8 15.8 207.9
Start simulation 4.3 20.1 240.2 3.4 16.0 192.1

10 Ticks 5.9 19.9 239.0 4.2 15.9 191.2
100 Ticks 6.2 20.4 231.0 4.6 16.3 184.0
1000 Ticks 5.7 19.6 249.7 4.5 15.6 199.7

7.2 Implementation Evaluation

Having obtained the full test results and completed our analysis, we now review the entire porting

process, including the pros and cons identified, the challenges encountered, and considerations for

future work.

7.2.1 Tech Stack and Project Management

As anticipated during the initial analysis phase in Section 4.1.1, the porting process was smooth

in terms of coding style and design. Avalonia.FuncUI provided a solid and user-friendly DSL.

The results listed in Section 5.3 show that the project structure remains consistent with the Issie

Electron project, while also reducing overall complexity by integrating the multi-process Electron

program into a single process and simplifying dependency management.

7.2.2 Implementation Challenges

In Section 5.2, we discussed the challenges faced during the porting process. The primary challenge

and workload of converting the DSL have been mostly addressed, except for some functionalities

that are not yet implemented. The API and type system differences still pose a problem, especially

the type errors caused by the previous dependency on Fable’s trans-compilation, as exemplified in

Section 5.2.2. These can be difficult to source and lack a common solution for each issue. It is

hoped that this report will serve as a reference for developers encountering similar issues in the

future.

7

48 CHAPTER 7. EVALUATION

7.2.3 Functionality Completeness and Future Works

As indicated in Table 5.2, the fundamental functionality requirements for Issie Avalonia have largely

been met, allowing for a robust evaluation of performance at this stage. However, certain critical

features necessary for a fully functional Circuit CAD and Simulator Application remain absent.

Notably, functionalities such as modifying wire connections and a catalogue menu for creating new

symbols have yet to be implemented. Detailed guidance for addressing these gaps is provided in

Section 5.4.

Further enhancements, such as the rendering optimizations discussed in Section 7.1.1, are crucial

to enhancing the practical value of this re-implementation for users.

7.3 Summary

The transition to a new and simpler tech stack has notably enhanced performance in areas like

simulation speed and memory usage. This change also brings several benefits, including more

efficient dependency management and a smoother learning curve for F# developers, particularly

for students in the Imperial HLP module.

However, GUI performance still requires significant improvement. Only after testing and im-

plementing potential solutions outlined in Section 7.1.1 can we determine whether to continue this

re-implementation on the new tech stack. Further development also faces considerable challenges,

as the original project underwent extensive testing and optimization over many years. Completing

the remaining functional modules is expected to be both time-consuming and resource-intensive.

Conclusions

In this project, we evaluated various .NET tech stacks and successfully re-implemented key func-

tionalities of Issie using Avalonia. Through extensive testing in rendering, simulation, and memory

usage, we have confirmed that transitioning to the .NET platform significantly enhances simulator

performance and optimizes memory utilization. However, the rendering tests highlight a need for

further optimization, which will be a primary focus for future developments.

Avalonia provides developers with a streamlined toolchain that simplifies dependency manage-

ment and closely aligns with the .NET standard and the MVU paradigm. Despite the considerable

challenges that further development may pose, the long-term benefits and potential enhancements

strongly support the continuation of this port.

50 CONCLUSIONS

AA

A
Appendix

AA

52 APPENDIX A. APPENDIX

Table A.1: File Completeness and Reference

Module Block File Completeness

DrawBlock Sheet Sheet.fs X

SheetSnap.fs X

SheetDisplay.fs Partial

SheetUpdateHelpers.fs X

SheetUpdate.fs X

Symbol Symbol.fs X

SymbolView.fs X

SymbolHelpers.fs X

SymbolPortHelpers.fs X

SymbolResizeHelpers.fs X

SymbolReplaceHelpers.fs X

SymbolUpdate.fs X

Wire BusWire.fs X

BusWireUpdateHelpers.fs X

BusWireRoutingHelpers.fs X

BusWireRoute.fs X

BusWireSeparate.fs X

BusWireUpdate.fs X

General BlockHelpers.fs X

PopupHelpers.fs X

RotateScale.fs X

Common - EEExtensions.fs X

Optics.fs X

ElectronAPI.fs X

HashMap.fs X

CommonTypes.fs X

DrawHelpers.fs Partial

Helpers.fs X

TimeHelpers.fs X

WidthInferer.fs X

UartFiles - BuildUartHelpers.fs Pending

Verilog Component Verilog VerilogAST.fs Pending

VerilogTypes.fs Pending

Continued on next page

AA

53

Table A.1 – continued from previous page

Module Block File Completeness

Simulation Simulator SimulatorTypes.fs X

TruthTableTypes.fs X

NumberHelpers.fs X

SynchronousUtils.fs X

Extractor.fs X

CanvasStateAnalyser.fs X

SimulationGraphAnalyser.fs X

Fast FastCreate.fs X

FastReduce.fs X

FastRun.fs X

Builder.fs X

Verilog.fs X

Runner.fs X

DependencyMerger.fs X

Simulator.fs X

UI General ModelHelpers.fs X

Style.fs Partial

Notifications.fs Pending

UIPopups.fs Pending

MemoryEditorView.fs Pending

MenuHelpers.fs X

MiscMenuView.fs Partial

TopMenuView.fs X

CustomCompPorts.fs Pending

SimulationView.fs X

Truth Table TruthTableReduce.fs Pending

TruthTableCreate.fs Pending

ConstraintReduceView.fs Pending

TruthTableView.fs Pending

TruthTableUpdate.fs Pending

Wave Simulation WaveSimHelpers.fs Pending

WaveSimStyle.fs Pending

WaveSimSelect.fs Pending

Continued on next page

AA

54 APPENDIX A. APPENDIX

Table A.1 – continued from previous page

Module Block File Completeness

WaveSim.fs Pending

View BuildView.fs Pending

CatalogueView.fs X

SelectedComponentView.fs Pending

MainView.fs X

ContextMenus.fs Partial

UpdateHelpers.fs X

Update.fs X

Bibliography

[1] What is ISSIE? https://tomcl.github.io/issie/, Accessed on 2024-02-01.

[2] Microsoft, .NET Framework Documentation, https : / / docs . microsoft . com / en - us /

dotnet/framework/, Accessed on 2024-01-31.

[3] F# Programming Language, https://fsharp.org/, Accessed on 2024-01-31.

[4] S. Fowler, “Model-view-update-communicate: Session types meet the elm architecture,” 14:1–

14:28, 2020. doi: 10.4230/LIPIcs.ECOOP.2020.14.

[5] What is Fable? https://fable.io/, Accessed on 2024-01-31.

[6] Electron: Build cross-platform desktop apps with JavaScript, HTML, and CSS, https://

www.electronjs.org/, Accessed on 2024-01-31.

[7] Elmish: Elm architecture in F#, https://elmish.github.io/elmish/, Accessed on 2024-

01-31.

[8] JavaScript, https://developer.mozilla.org/en-US/docs/Web/JavaScript, Accessed on

2024-01-31.

[9] Marco Selvatici, DEflow: An Extensible Hardware Design Platform for Teaching Digital

Electronics, https://github.com/tomcl/issie/blob/master/docsrc/files/marco-

report.pdf/, Accessed on 2024-01-31.

[10] K. Kredpattanakul and Y. Limpiyakorn, “Transforming javascript-based web application to

cross-platform desktop with electron,” pp. 571–579, 2018. doi: 10.1007/978-981-13-1056-

0_56.

[11] GNU General Public License, version 3 (GPL-3.0), https://www.gnu.org/licenses/gpl-

3.0.en.html, Accessed on 2024-01-31.

[12] Node.js Official Website, https://nodejs.org/en/, Accessed on 2024-01-31.

[13] Chromium Official Website, https://www.chromium.org/, Accessed on 2024-01-31.

[14] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-performance network pro-

grams,” IEEE Internet Computing, vol. 14, pp. 80–83, 2010. doi: 10.1109/MIC.2010.145.

https://tomcl.github.io/issie/
https://docs.microsoft.com/en-us/dotnet/framework/
https://docs.microsoft.com/en-us/dotnet/framework/
https://fsharp.org/
https://doi.org/10.4230/LIPIcs.ECOOP.2020.14
https://fable.io/
https://www.electronjs.org/
https://www.electronjs.org/
https://elmish.github.io/elmish/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/tomcl/issie/blob/master/docsrc/files/marco-report.pdf/
https://github.com/tomcl/issie/blob/master/docsrc/files/marco-report.pdf/
https://doi.org/10.1007/978-981-13-1056-0_56
https://doi.org/10.1007/978-981-13-1056-0_56
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://nodejs.org/en/
https://www.chromium.org/
https://doi.org/10.1109/MIC.2010.145

56 BIBLIOGRAPHY

[15] D. Alic, S. Omanovic, and V. Giedrimas, “Comparative analysis of functional and object-

oriented programming,” 2016 39th International Convention on Information and Commu-

nication Technology, Electronics and Microelectronics (MIPRO), pp. 667–672, 2016. doi:

10.1109/MIPRO.2016.7522224.

[16] D. Syme, “The early history of f#,” Proceedings of the ACM on Programming Languages,

vol. 4, pp. 1–58, 2020. doi: 10.1145/3386325.

[17] M. Learn, Unit testing f# in .net core with dotnet test and mstest, https : / / learn .

microsoft.com/en-Us/dotnet/core/testing/unit-testing-fsharp-with-mstest,

Accessed on 2024-02-05, 2021.

[18] Fable bindings for electron apps, https://github.com/fable-compiler/fable-electron,

Accessed on 2024-01-31.

[19] E. Czaplicki and S. Chong, “Asynchronous functional reactive programming for guis,” Pro-

ceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2013. doi: 10.1145/2491956.2462161.

[20] Facebook, Inc., ReactJS Official Website, https://reactjs.org/, Accessed on 2024-01-31.

[21] Hypertext Markup Language (HTML), https://developer.mozilla.org/en-US/docs/

Web/HTML, Accessed on 2024-01-31.

[22] Announcing Fable React 5, https://fable.io/blog/2019/2019-04-16-Announcing-

Fable-React-5.html, Accessed on 2024-02-05.

[23] C# Programming Language, https://docs.microsoft.com/en-us/dotnet/csharp/,

Accessed on 2024-02-05.

[24] Visual Basic Programming Language, https://docs.microsoft.com/en-us/dotnet/

visual-basic/, Accessed on 2024-02-05.

[25] Facebook, Inc., Avalonia vs Electron, https://stackshare.io/stackups/avalonia-vs-

electron, Accessed on 2024-05-31.

[26] QtSharp - Qt bindings for .NET, https://github.com/ddobrev/QtSharp, Accessed on

2024-01-31.

[27] Microsoft, Windows Presentation Foundation, https://docs.microsoft.com/en-us/

dotnet/desktop/wpf/, Accessed on 2024-01-31.

[28] Avalonia - A cross platform XAML Framework, https://avaloniaui.net/, Accessed on

2024-01-31.

https://doi.org/10.1109/MIPRO.2016.7522224
https://doi.org/10.1145/3386325
https://learn.microsoft.com/en-Us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://learn.microsoft.com/en-Us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://github.com/fable-compiler/fable-electron
https://doi.org/10.1145/2491956.2462161
https://reactjs.org/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://fable.io/blog/2019/2019-04-16-Announcing-Fable-React-5.html
https://fable.io/blog/2019/2019-04-16-Announcing-Fable-React-5.html
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://stackshare.io/stackups/avalonia-vs-electron
https://stackshare.io/stackups/avalonia-vs-electron
https://github.com/ddobrev/QtSharp
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/
https://avaloniaui.net/

BIBLIOGRAPHY 57

[29] Microsoft, XAML Official Documentation, https://docs.microsoft.com/en-us/dotnet/

desktop/xaml/, Accessed on 2024-01-31.

[30] Desktop Apps with Avalonia and F#, https://blog.tunaxor.me/blog/2020-01-23-

desktop-apps-with-avalonia-and-fsharp-4n21.html, Accessed on 2024-02-05.

[31] F# UI App with FuncUI: A Real Application, http://blog.kevindayprogramming.com/a-

real-world-fsharp-ui-app-with-funcui/, Accessed on 2024-02-05.

[32] Fabulous Documentation, https://docs.fabulous.dev/, Accessed on 2024-05-31.

[33] Getting Elmish in .NET with Elmish.WPF, Accessed on 2024-02-05. [Online]. Available:

https://www.compositional-it.com/news-blog/elmish-wpf/.

[34] A. Nosenko, WPF in 2021: Alive, Dead, or on Life Support? Accessed on 2024-02-05. [Online].

Available: https://dev.to/noseratio/the-signs-of-wpf-currently-being-on-life-

support-1h3a.

[35] Uno Platform - Build Mobile, Web, and Desktop Apps, https://platform.uno/, Accessed

on 2024-01-31.

[36] Avalonia vs UNO, Accessed on 2024-02-05. [Online]. Available: https://stackshare.io/

stackups/avalonia-vs-uno.

[37] Microsoft, .NET Multi-platform App UI, https://docs.microsoft.com/en-us/dotnet/

maui/, Accessed on 2024-01-31.

[38] M. Learn, What’s new in .NET 6, Accessed on 2024-02-05. [Online]. Available: https://

learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-6.

[39] Fabulous for .NET MAUI (Microsoft.Maui.Controls), Accessed on 2024-02-05. [Online]. Avail-

able: https://github.com/fabulous-dev/Fabulous.MauiControls.

[40] Mike James, Avalonia UI and MAUI - Something for everyone, https://avaloniaui.net/

Blog/avalonia-ui-and-maui-something-for-everyone, Accessed on 2024-05-31.

[41] Microsoft, Blazor Official Website, https://dotnet.microsoft.com/en-us/apps/aspnet/

web-apps/blazor, Accessed on 2024-05-31.

[42] Mike James, A Year in Recap: Celebrating this years milestones, https://www.avaloniaui.

net/Blog/a-year-in-recap-celebrating-this-years-milestones, Accessed on 2024-

05-31.

[43] Avalonia.FuncUI - Functional Avalonia UI Framework, https://github.com/AvaloniaCommunity/

Avalonia.FuncUI, Accessed on 2024-01-31.

https://docs.microsoft.com/en-us/dotnet/desktop/xaml/
https://docs.microsoft.com/en-us/dotnet/desktop/xaml/
https://blog.tunaxor.me/blog/2020-01-23-desktop-apps-with-avalonia-and-fsharp-4n21.html
https://blog.tunaxor.me/blog/2020-01-23-desktop-apps-with-avalonia-and-fsharp-4n21.html
http://blog.kevindayprogramming.com/a-real-world-fsharp-ui-app-with-funcui/
http://blog.kevindayprogramming.com/a-real-world-fsharp-ui-app-with-funcui/
https://docs.fabulous.dev/
https://www.compositional-it.com/news-blog/elmish-wpf/
https://dev.to/noseratio/the-signs-of-wpf-currently-being-on-life-support-1h3a
https://dev.to/noseratio/the-signs-of-wpf-currently-being-on-life-support-1h3a
https://platform.uno/
https://stackshare.io/stackups/avalonia-vs-uno
https://stackshare.io/stackups/avalonia-vs-uno
https://docs.microsoft.com/en-us/dotnet/maui/
https://docs.microsoft.com/en-us/dotnet/maui/
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-6
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-6
https://github.com/fabulous-dev/Fabulous.MauiControls
https://avaloniaui.net/Blog/avalonia-ui-and-maui-something-for-everyone
https://avaloniaui.net/Blog/avalonia-ui-and-maui-something-for-everyone
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://www.avaloniaui.net/Blog/a-year-in-recap-celebrating-this-years-milestones
https://www.avaloniaui.net/Blog/a-year-in-recap-celebrating-this-years-milestones
https://github.com/AvaloniaCommunity/Avalonia.FuncUI
https://github.com/AvaloniaCommunity/Avalonia.FuncUI

58 BIBLIOGRAPHY

[44] Introduction to Domain-Specific Languages (DSLs), https://en.wikipedia.org/wiki/

Domain-specific_language, Accessed on 2024-02-02.

[45] FuncUI Documentation - View Lifetime, https://funcui.avaloniaui.net/view-basics/

lifetime, Accessed on 2024-01-31.

[46] Fabulous Documentation - Performance Optimization, https : / / docs . fabulous . dev /

advanced/performance-optimization, Accessed on 2024-05-31.

[47] Microsoft, AvaloniaUI Documentation - High level architecture overview, https://github.

com / AvaloniaUI / Avalonia / wiki / High - level - architecture - overview, Accessed on

2024-01-31.

[48] Avalonia High-Level Architecture Overview, https://github.com/AvaloniaUI/Avalonia/

wiki/High-level-architecture-overview, Accessed on 2024-02-05.

[49] Y. Wang, A high performance digital circuit simulator for ISSIE, Accessed on 2024-02-05.

[Online]. Available: https://github.com/tomcl/issie/blob/master/docsrc/1714652_

Rpt_A%20high%20performance%20digital%20circuit%20simulator%20for%20ISSIE.

pdf.

[50] FuncUI Documentation - Component, https: // funcui. avaloniaui. net/ components,

Accessed on 2024-01-31.

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://funcui.avaloniaui.net/view-basics/lifetime
https://funcui.avaloniaui.net/view-basics/lifetime
https://docs.fabulous.dev/advanced/performance-optimization
https://docs.fabulous.dev/advanced/performance-optimization
https://github.com/AvaloniaUI/Avalonia/wiki/High-level-architecture-overview
https://github.com/AvaloniaUI/Avalonia/wiki/High-level-architecture-overview
https://github.com/AvaloniaUI/Avalonia/wiki/High-level-architecture-overview
https://github.com/AvaloniaUI/Avalonia/wiki/High-level-architecture-overview
https://github.com/tomcl/issie/blob/master/docsrc/1714652_Rpt_A%20high%20performance%20digital%20circuit%20simulator%20for%20ISSIE.pdf
https://github.com/tomcl/issie/blob/master/docsrc/1714652_Rpt_A%20high%20performance%20digital%20circuit%20simulator%20for%20ISSIE.pdf
https://github.com/tomcl/issie/blob/master/docsrc/1714652_Rpt_A%20high%20performance%20digital%20circuit%20simulator%20for%20ISSIE.pdf
https://funcui.avaloniaui.net/components

	Front matter
	Title page
	Abstract
	Declaration of Originality
	Copyright Declaration
	Acknowledgments
	List of Acronyms
	List of Figures

	Introduction
	Background Research
	Issie
	Web Ecosystem
	Functional Programming
	MVU Architecture

	The .NET Re-implementations
	Summary

	Requirement Capture
	Technical Requirements
	Functionality Requirement
	Conclusion

	Analysis and Design
	Availability of GUI Frameworks
	DSL and Wrapper

	Tech-stack Comparison
	Application Life Time
	Dependency Management

	Conclusion

	Implementation
	Proof of Concept
	Implementation Challenges
	DSL Differences
	Type System
	File Management

	Porting Results
	Further Developments
	Summary

	Test
	GUI Performance Test
	Simulator Performance Test
	Memory Consumption
	Summary

	Evaluation
	Performance
	Rendering Performance
	Simulation
	Memory

	Implementation Evaluation
	Tech Stack and Project Management
	Implementation Challenges
	Functionality Completeness and Future Works

	Summary

	Conclusions
	Appendix
	Bibliography

